Appl Environ Microbiol
January 2024
Common sterilization techniques for labile and sensitive materials have far-reaching applications in medical, pharmaceutical, and industrial fields. Heat inactivation, chemical treatment, and radiation are established methods to inactivate microorganisms, but pose a threat to humans and the environment and can damage susceptible materials or products. Recent studies have demonstrated that cold low-pressure plasma (LPP) treatment is an efficient alternative to common sterilization methods, as LPP's levels of radicals, ions, (V)UV-radiation, and exposure to an electromagnetic field can be modulated using different process gases, such as oxygen, nitrogen, argon, or synthetic (ambient) air.
View Article and Find Full Text PDFMicroorganisms pose a serious threat for us humans, which is exemplified by the recent emergence of pathogens such as SARS-CoV-2 or the increasing number of multi-resistant pathogens such as MRSA. To control surface microorganisms and viruses, we investigated the disinfection properties of an AI-controlled robot, HERO21, equipped with eight 130-W low pressure UV-C mercury vapor discharge lamps emitting at a wavelength of 254 nm, which is strongly absorbed by DNA and RNA, thus inactivating illuminated microorganisms. Emissivity and spatial irradiance distribution of a single UV-C lamp unit was determined using a calibrated spectrometer and numerical simulation, respectively.
View Article and Find Full Text PDFAs humans explore and settle in space, they will need to mine elements to support industries such as manufacturing and construction. In preparation for the establishment of permanent human settlements across the Solar System, we conducted the ESA BioRock experiment on board the International Space Station to investigate whether biological mining could be accomplished under extraterrestrial gravity conditions. We tested the hypothesis that the gravity () level influenced the efficacy with which biomining could be achieved from basalt, an abundant material on the Moon and Mars, by quantifying bioleaching by three different microorganisms under microgravity, simulated Mars and Earth gravitational conditions.
View Article and Find Full Text PDFMicroorganisms are employed to mine economically important elements from rocks, including the rare earth elements (REEs), used in electronic industries and alloy production. We carried out a mining experiment on the International Space Station to test hypotheses on the bioleaching of REEs from basaltic rock in microgravity and simulated Mars and Earth gravities using three microorganisms and a purposely designed biomining reactor. Sphingomonas desiccabilis enhanced mean leached concentrations of REEs compared to non-biological controls in all gravity conditions.
View Article and Find Full Text PDFMicroorganisms perform countless tasks on Earth and they are expected to be essential for human space exploration. Despite the interest in the responses of bacteria to space conditions, the findings on the effects of microgravity have been contradictory, while the effects of Martian gravity are nearly unknown. We performed the ESA BioRock experiment on the International Space Station to study microbe-mineral interactions in microgravity, simulated Mars gravity and simulated Earth gravity, as well as in ground gravity controls, with three bacterial species: , , and .
View Article and Find Full Text PDFJ Dtsch Dermatol Ges
December 2020
Regarding future space exploration missions and long-term exposure experiments, a detailed investigation of all factors present in the outer space environment and their effects on organisms of all life kingdoms is advantageous. Influenced by the multiple factors of outer space, the extremophilic bacterium Deinococcus radiodurans has been long-termly exposed outside the International Space Station in frames of the Tanpopo orbital mission. The study presented here aims to elucidate molecular key components in D.
View Article and Find Full Text PDFIn a Mars exploration scenario, knowing if and how highly resistant spores would survive on the Martian surface is crucial to design planetary protection measures and avoid false positives in life-detection experiments. Therefore, in this study a systematic screening was performed to determine whether spores could survive an average day on Mars. For that, spores from two comprehensive sets of isogenic mutant strains, defective in DNA protection or repair genes, were exposed to 24 h of simulated Martian atmospheric environment with or without 8 h of Martian UV radiation [M(+)UV and M(-)UV, respectively].
View Article and Find Full Text PDFSubmarine hydrothermal vents are inhabited by a variety of microorganisms capable of tolerating environmental extremes, making them ideal candidates to further expand our knowledge of the limitations for terrestrial life, including their ability to survive the exposure of spaceflight-relevant conditions. The spore resistance of two Bacillus spp. strains, APA and SBP3, isolated from two shallow vents off Panarea Island (Aeolian Islands, Italy), to artificial and environmental stressors (i.
View Article and Find Full Text PDFBiofilms have been intensively investigated over the past decades. Bacillus subtilis is able to form highly structured colony biofilms, and as one of the most studied Gram-positive model organisms, has helped to decipher the complex genetic regulation of biofilms. Several methods have been developed to analyze the architecture of biofilms.
View Article and Find Full Text PDFPlasma sterilization is a promising alternative to conventional sterilization methods for industrial, clinical, and spaceflight purposes. Low pressure plasma (LPP) discharges contain a broad spectrum of active species, which lead to rapid microbial inactivation. To study the efficiency and mechanisms of sterilization by LPP, we use spores of the test organism Bacillus subtilis because of their extraordinary resistance against conventional sterilization procedures.
View Article and Find Full Text PDFJ Microbiol Methods
March 2017
Bacterial biofilms cause severe problems in medicine and industry due to the high resistance to disinfectants and environmental stress of organisms within biofilms. Addressing challenges caused by biofilms requires full understanding of the underlying mechanisms for bacterial resistance and survival in biofilms. However, such work is hampered by a relative lack of systems for biofilm cultivation that are practical and reproducible.
View Article and Find Full Text PDFBackground: Oral Campylobacter species have been found to be associated with periodontitis progression. While the etiological significance of Campylobacter rectus is quite established, the association of C. gracilis, C.
View Article and Find Full Text PDF