Publications by authors named "Felix Fahrnbauer"

Pseudobinary phases (SnSe) BiSe exhibit a very diverse structural chemistry characterized by different building blocks, all of which are cutouts of the NaCl type. For SnSe contents between x = 5 and x = 0.5, several new phases were discovered.

View Article and Find Full Text PDF

LaSr[SiN](OF) with x = 0.489 was obtained as a microcrystalline product by metathesis at 1500 °C in a radio-frequency furnace starting from Si(NH), La(NH), SrH, LaF, and CeF. The structure of the new nitridosilicate oxide fluoride was determined by combining transmission electron microscopy (TEM) and single-crystal X-ray diffraction using a microfocused synchrotron beam.

View Article and Find Full Text PDF

Small molecule signaling promotes the communication between bacteria as well as between bacteria and eukaryotes. The opportunistic pathogenic bacterium Legionella pneumophila employs LAI-1 (3-hydroxypentadecane-4-one) for bacterial cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, which regulates a variety of processes including natural competence for DNA uptake and pathogen-host cell interactions.

View Article and Find Full Text PDF

The causative agent of Legionnaires' disease, Legionella pneumophila, employs the autoinducer compound LAI-1 (3-hydroxypentadecane-4-one) for cell-cell communication. LAI-1 is produced and detected by the Lqs (Legionella quorum sensing) system, comprising the autoinducer synthase LqsA, the sensor kinases LqsS and LqsT, as well as the response regulator LqsR. Lqs-regulated processes include pathogen-host interactions, production of extracellular filaments and natural competence for DNA uptake.

View Article and Find Full Text PDF

Heterostructures that consist of a germanium antimony telluride matrix and cobalt germanide precipitates can be obtained by straightforward solid-state synthesis including simple annealing and quenching procedures. The microscale precipitates are homogeneously distributed in a matrix with pronounced "herringbone-like" nanostructure associated with very low thermal conductivities. In comparison to the corresponding pure tellurides, the figure of merit (ZT) values of heterostructured materials are remarkably higher.

View Article and Find Full Text PDF

The oxonitridosilicate chloride La6Ba3[Si17N29O2]Cl was synthesized by a high-temperature reaction in a radiofrequency furnace starting from LaCl3, BaH2, and the ammonolysis product of Si2Cl6. Diffraction data of a micrometer-sized single crystal were obtained using microfocused synchrotron radiation at beamline ID11 of the ESRF. EDX measurements on the same crystal confirm the chemical composition.

View Article and Find Full Text PDF

The structure elucidation of the novel sulfide telluride Pb8Sb8S15Te5 demonstrates a new versatile procedure that exploits the synergism of electron microscopy and synchrotron diffraction methods for accurate structure analyses of side-phases in heterogeneous microcrystalline samples. Suitable crystallites of unknown compounds can be identified by transmission electron microscopy and relocated and centered in a microfocused synchrotron beam by means of X-ray fluorescence scans. The refined structure model is then confirmed by simulating HRTEM images of the same crystallite.

View Article and Find Full Text PDF

In the system Ge-Sn-Sb-Te, there is a complete solid solution series between GeSb2Te4 and SnSb2Te4. As Sn2Sb2Te5 does not exist, Sn can only partially replace Ge in Ge2Sb2Te5; samples with 75% or more Sn are not homogeneous. The joint refinement of high-resolution synchrotron data measured at the K-absorption edges of Sn, Sb and Te combined with data measured at off-edge wavelengths unambiguously yields the element distribution in 21R-Ge(0.

View Article and Find Full Text PDF

Owing to a parity allowed 4f(6)((7)F)5d(1)→4f(7)((8)S(7/2)) transition, powders of the nominal composition Sr(0.25)Ba(0.75)Si(2)O(2)N(2):Eu(2+) (2 mol% Eu(2+)) show surprising intense blue emission (λ(em)=472 nm) when excited by UV to blue radiation.

View Article and Find Full Text PDF