Publications by authors named "Felix Engel"

Aims: Activation of Protease Activated Receptor 2 (PAR2) has been shown to be involved in regulation of injury-related processes including inflammation, fibrosis and hypertrophy. In this study we will investigate the role of PAR2 in cardiac injury in a mouse model of hypertension using continuous infusion with angiotensin II.

Methods: Hypertension was induced in 12 weeks old wildtype (wt, n = 8) and PAR2 deficient mice (n = 9) by continuous infusion with angiotensin II for 4 weeks using osmotic minipumps.

View Article and Find Full Text PDF

The reuse of research software is central to research efficiency and academic exchange. The application of software enables researchers to reproduce, validate, and expand upon study findings. The analysis of open-source code aids in the comprehension, comparison, and integration of approaches.

View Article and Find Full Text PDF

The complexity in structure and function of the nervous system, as well as its slow rate of regeneration, makes it more difficult to treat it compared to other tissues. Neural tissue engineering aims to create an appropriate environment for nerve cell proliferation and differentiation. Fibrous scaffolds with suitable morphology and topography and better mimicry of the extracellular matrix have been promising for the alignment and migration of neural cells.

View Article and Find Full Text PDF
Article Synopsis
  • Long-acting passive immunization using AAV vectors may help protect immunosuppressed groups from infectious diseases, especially in the context of COVID-19.
  • Researchers developed AAV vectors with a human neutralizing antibody, TRES6, and tested them in mice, achieving high serum concentrations for up to one year after injection.
  • The study showed that different AAV capsids affected where the antibody was expressed in the body and its ability to bind to immune receptors, leading to effective protection against SARS-CoV-2 infection in the mice.
View Article and Find Full Text PDF

Therapy resistance and metastasis, the most fatal steps in cancer, are often triggered by a (partial) activation of the epithelial-mesenchymal transition (EMT) programme. A mesenchymal phenotype predisposes to ferroptosis, a cell death pathway exerted by an iron and oxygen-radical-mediated peroxidation of phospholipids containing polyunsaturated fatty acids. We here show that various forms of EMT activation, including TGFβ stimulation and acquired therapy resistance, increase ferroptosis susceptibility in cancer cells, which depends on the EMT transcription factor Zeb1.

View Article and Find Full Text PDF

Uncovering the function of understudied G protein-coupled receptors (GPCRs) provides a wealth of untapped therapeutic potential. The poorly understood adhesion GPCR () is widely expressed in developing kidneys. In adulthood, expression is enriched in parietal epithelial cells (PECs) and epithelial cells of the collecting duct and urothelium.

View Article and Find Full Text PDF

Myocardial infarction (MI) causes cell death, disrupts electrical activity, triggers arrhythmia, and results in heart failure, whereby 50-60% of MI-associated deaths manifest as sudden cardiac deaths (SCD). The most effective therapy for SCD prevention is implantable cardioverter defibrillators (ICDs). However, ICDs contribute to adverse remodeling and disease progression and do not prevent arrhythmia.

View Article and Find Full Text PDF

3D-bioprinting is a promising technology to produce human tissues as drug screening tool or for organ repair. However, direct printing of living cells has proven difficult. Here, a method is presented to directly 3D-bioprint human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes embedded in a collagen-hyaluronic acid ink, generating centimeter-sized functional ring- and ventricle-shaped cardiac tissues in an accurate and reproducible manner.

View Article and Find Full Text PDF

Adhesion G protein-coupled receptors (aGPCRs) comprise the second-largest class of GPCRs, the most common target for approved pharmacological therapies. aGPCRs play an important role in development and disease and have recently been associated with the kidney. Several aGPCRs are expressed in the kidney and some aGPCRs are either required for kidney development or their expression level is altered in diseased kidneys.

View Article and Find Full Text PDF

Uveal melanoma (UM) has a high risk to progress to metastatic disease with a median survival of 3.9 months after metastases detection, as metastatic UM responds poorly to conventional and targeted chemotherapy and is largely refractory to immunotherapy. Here, we present a patient-derived zebrafish UM xenograft model mimicking metastatic UM.

View Article and Find Full Text PDF

Ischemic cardiomyopathy, driven by loss of cardiomyocytes and inadequate proliferative response, persists to be a major global health problem. Using a functional high-throughput screening, we assessed differential proliferative potential of 2019 miRNAs after transient hypoxia by transfecting both miR-inhibitor and miR-mimic libraries in human iPSC-CM. Whereas miR-inhibitors failed to enhance EdU uptake, overexpression of 28 miRNAs substantially induced proliferative activity in hiPSC-CM, with an overrepresentation of miRNAs belonging to the primate-specific C19MC-cluster.

View Article and Find Full Text PDF

Cardiac tissue engineering is a promising strategy to prevent heart failure. However, several issues remain unsolved, including efficient electrical coupling and incorporating factors to enhance tissue maturation and vascularization. Herein, a biohybrid hydrogel that enhances beating properties of engineered cardiac tissues and allows drug release concurrently is developed.

View Article and Find Full Text PDF

The DNA damage response (DDR) and epithelial-to-mesenchymal transition (EMT) are two crucial cellular programs in cancer biology. While the DDR orchestrates cell-cycle progression, DNA repair, and cell death, EMT promotes invasiveness, cellular plasticity, and intratumor heterogeneity. Therapeutic targeting of EMT transcription factors, such as ZEB1, remains challenging, but tumor-promoting DDR alterations elicit specific vulnerabilities.

View Article and Find Full Text PDF

Promoting cardiomyocyte proliferation is a promising strategy to regenerate the heart. Yet, so far, it is poorly understood how cardiomyocyte proliferation is regulated, and no factor identified to promote mammalian cardiomyocyte proliferation has been translated into medical practice. Therefore, finding a novel factor will be vital.

View Article and Find Full Text PDF

Physiological and pathological cardiac stress induced by exercise and hypertension, respectively, increase the hemodynamic load for the heart and trigger specific hypertrophic signals in cardiomyocytes leading to adaptive or maladaptive cardiac hypertrophy responses involving a mechanosensitive remodeling of the contractile cytoskeleton. Integrins sense load and have been implicated in cardiac hypertrophy, but how they discriminate between the two types of cardiac stress and translate mechanical loads into specific cytoskeletal signaling pathways is not clear. Here, we report that the focal adhesion protein β-parvin is highly expressed in cardiomyocytes and facilitates the formation of cell protrusions, the serial assembly of newly synthesized sarcomeres, and the hypertrophic growth of neonatal rat ventricular cardiomyocytes (NRVCs) in vitro.

View Article and Find Full Text PDF

While bone regenerates itself after an injury, a critical bone defect requires external interventions. Engineering approaches to restore bone provide a temporary scaffold to support the damage and provide beneficial biological cues for bone repair. Biomimetically generated scaffolds replicate the naturally occurring phenomena in bone regeneration.

View Article and Find Full Text PDF

SMYD2 is a histone methyltransferase, which methylates both histone H3K4 as well as a number of non-histone proteins. Dysregulation of SMYD2 has been associated with several diseases including cancer. In the present study, we investigated whether and how SMYD2 might contribute to colorectal cancer.

View Article and Find Full Text PDF

Non-centrosomal microtubule-organizing centers (MTOCs) are pivotal for the function of multiple cell types, but the processes initiating their formation are unknown. Here, we find that the transcription factor myogenin is required in murine myoblasts for the localization of MTOC proteins to the nuclear envelope. Moreover, myogenin is sufficient in fibroblasts for nuclear envelope MTOC (NE-MTOC) formation and centrosome attenuation.

View Article and Find Full Text PDF

Cardiac tissue engineering is a promising strategy to generate human cardiac tissues for modeling cardiac diseases, screening for therapeutic drugs, and repairing the injured heart. Yet, several issues remain to be resolved including the generation of tissues with high cardiomyocyte density. Here, it is shown that the integration of the glycogen synthase kinase-3β inhibitor CHIR99021 in collagen I hydrogels promotes proliferation of human-induced pluripotent stem cell-derived (hiPSC) cardiomyocytes post-fabrication improving contractility of and calcium flow in engineered 3D cardiac microtissues.

View Article and Find Full Text PDF

Induction of cardiomyocyte proliferation is a promising option to regenerate the heart. Thus, it is important to elucidate mechanisms that contribute to the cell cycle arrest of mammalian cardiomyocytes. Here, we assessed the contribution of the pericentrin (Pcnt) S isoform to cell cycle arrest in postnatal cardiomyocytes.

View Article and Find Full Text PDF

tissue engineering is an emerging field aiming at the generation of ready-to-use three-dimensional tissues. One solution to supply a proper vascularization of larger tissues to provide oxygen and nutrients is the arteriovenous loop (AVL) model. However, for this model, suitable scaffold materials are needed that are biocompatible/non-immunogenic, slowly degradable, and allow vascularization.

View Article and Find Full Text PDF

Controlling cell proliferation is critical for organism development, tissue homeostasis, disease, and regeneration. IQGAP3 has been shown to be required for proper cell proliferation and migration, and is associated to a number of cancers. Moreover, its expression is inversely correlated with the overall survival rate in the majority of cancers.

View Article and Find Full Text PDF

In order to take advantage of the continuously increasing number of transcriptome studies, it is important to develop strategies that integrate multiple expression datasets addressing the same biological question to allow a robust analysis. Here, we propose a meta-analysis framework that integrates enriched pathways identified through the Gene Set Enrichment Analysis (GSEA) approach and calculates for each meta-pathway an empirical -value. Validation of our approach on benchmark datasets showed comparable or even better performance than existing methods and an increase in robustness with increasing number of integrated datasets.

View Article and Find Full Text PDF

Introduction: In recent years, perioperative care of patients after colorectal surgery has been increasingly standardised according to the fast-track concept and is accepted as a structured method of care to reduce perioperative complications. Indeed, initial studies have indicated that there is a long-term favourable effect on the oncological outcome, if the adherence to the individual measures is at least 70%. Even though there is unambiguous evidence for the efficacy of the modern perioperative treatment concept, it is often difficult to comply with the protocol during normal clinical work, particularly in Germany.

View Article and Find Full Text PDF