Purpose: The ever-increasing volume of medical imaging data and interest in Big Data research brings challenges to data organization, categorization, and retrieval. Although the radiological value chain is almost entirely digital, data structuring has been widely performed pragmatically, but with insufficient naming and metadata standards for the stringent needs of image analysis. To enable automated data management independent of naming and metadata, this study focused on developing a convolutional neural network (CNN) that classifies medical images based solely on voxel data.
View Article and Find Full Text PDFBackground Clinically significant prostate cancer (PCa) diagnosis at MRI requires accurate and efficient radiologic interpretation. Although artificial intelligence may assist in this task, lack of transparency has limited clinical translation. Purpose To develop an explainable artificial intelligence (XAI) model for clinically significant PCa diagnosis at biparametric MRI using Prostate Imaging Reporting and Data System (PI-RADS) features for classification justification.
View Article and Find Full Text PDFBackground: Artificial intelligence (AI) holds the promise of supporting nurses' clinical decision-making in complex care situations or conducting tasks that are remote from direct patient interaction, such as documentation processes. There has been an increase in the research and development of AI applications for nursing care, but there is a persistent lack of an extensive overview covering the evidence base for promising application scenarios.
Objective: This study synthesizes literature on application scenarios for AI in nursing care settings as well as highlights adjacent aspects in the ethical, legal, and social discourse surrounding the application of AI in nursing care.
With the increasing importance and complexity of data pipelines, data quality became one of the key challenges in modern software applications. The importance of data quality has been recognized beyond the field of data engineering and database management systems (DBMSs). Also, for machine learning (ML) applications, high data quality standards are crucial to ensure robust predictive performance and responsible usage of automated decision making.
View Article and Find Full Text PDFFront Aging Neurosci
November 2016
The present study explores if EEG spectral parameters can discriminate between healthy elderly controls (HC), Alzheimer's disease (AD) and vascular dementia (VaD) using. We considered EEG data recorded during normal clinical routine with 114 healthy controls (HC), 114 AD, and 114 VaD patients. The spectral features extracted from the EEG were the absolute delta power, decay from lower to higher frequencies, amplitude, center and dispersion of the alpha power and baseline power of the entire frequency spectrum.
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
September 2015
Decoding motor commands from noninvasively measured neural signals has become important in brain-computer interface (BCI) research. Applications of BCI include neurorehabilitation after stroke and control of limb prostheses. Until now, most studies have tested simple movement trajectories in two dimensions by using constant velocity profiles.
View Article and Find Full Text PDFThree-dimensional movies presented via stereoscopic displays have become more popular in recent years aiming at a more engaging viewing experience. However, neurocognitive processes associated with the perception of stereoscopic depth in complex and dynamic visual stimuli remain understudied. Here, we investigate the influence of stereoscopic depth on both neurophysiology and subjective experience.
View Article and Find Full Text PDFThe increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes.
View Article and Find Full Text PDFThe goal of most functional Magnetic Resonance Imaging (fMRI) analyses is to investigate neural activity. Many fMRI analysis methods assume that the temporal dynamics of the hemodynamic response function (HRF) to neural activation is separable from its spatial dynamics. Although there is empirical evidence that the HRF is more complex than suggested by space-time separable canonical HRF models, it is difficult to assess how much information about neural activity is lost when assuming space-time separability.
View Article and Find Full Text PDFAcetylcholine is an important neuromodulator involved in cognitive function. The impact of cholinergic neuromodulation on computations within the cortical microcircuit is not well understood. Here we investigate the effects of layer-specific cholinergic drug application in the tree shrew primary visual cortex during visual stimulation with drifting grating stimuli of varying contrast and orientation.
View Article and Find Full Text PDFEach method for imaging brain activity has technical or physiological limits. Thus, combinations of neuroimaging modalities that can alleviate these limitations such as simultaneous recordings of neurophysiological and hemodynamic activity have become increasingly popular. Multimodal imaging setups can take advantage of complementary views on neural activity and enhance our understanding about how neural information processing is reflected in each modality.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) based on the so-called blood oxygen level-dependent (BOLD) contrast is a powerful tool for studying brain function not only locally but also on the large scale. Most studies assume a simple relationship between neural and BOLD activity, in spite of the fact that it is important to elucidate how the "when" and "what" components of neural activity are correlated to the "where" of fMRI data. Here we conducted simultaneous recordings of neural and BOLD signal fluctuations in primary visual (V1) cortex of anesthetized monkeys.
View Article and Find Full Text PDF