Publications by authors named "Felix Agyemang"

High-resolution global flood risk maps are increasingly used to inform disaster risk planning and response, particularly in lower income countries with limited data or capacity. However, current approaches do not adequately account for spatial variation in social vulnerability, which is a key determinant of variation in outcomes for exposed populations. Here we integrate annual average exceedance probability estimates from a high-resolution fluvial flood model with gridded population and poverty data to create a global vulnerability-adjusted risk index for flooding (VARI Flood) at 90-meter resolution.

View Article and Find Full Text PDF

Urban data deficits in developing countries impede evidence-based planning and policy. Could energy data be used to overcome this challenge by serving as a local proxy for living standards or economic activity in large urban areas? To answer this question, we examine the potential of georeferenced residential electricity meter data and night-time lights (NTL) data in the megacity of Karachi, Pakistan. First, we use nationally representative survey data to establish a strong association between electricity consumption and household living standards.

View Article and Find Full Text PDF

High resolution poverty mapping supports evidence-based policy and research, yet about half of all countries lack the survey data needed to generate useful poverty maps. To overcome this challenge, new non-traditional data sources and deep learning techniques are increasingly used to create small-area estimates of poverty in low- and middle-income countries (LMICs). Convolutional Neural Networks (CNN) trained on satellite imagery are emerging as one of the most popular and effective approaches.

View Article and Find Full Text PDF