Anti-human immunodeficiency virus (HIV) broadly neutralizing antibodies (bNAbs) offer a promising approach for the treatment of HIV-1. The current paradigm for antibody therapy involves passive antibody transfer, requiring regular delivery of bNAbs in treating chronic diseases such as HIV-1. An alternative strategy is to use AAV-mediated gene transfer to enable in vivo production of desirable anti-HIV-1 antibodies.
View Article and Find Full Text PDFA promising direction in the treatment of HIV infection is a gene therapy approach based on the insertion of antiviral genes aimed at inhibiting HIV replication into the genome of host cells. We obtained six constructs of lentiviral vectors with different arrangements of three antiviral genes: microRNAs against the CCR5 gene, the gene encoding the C-peptide, and the gene encoding the modified human TRIM5a protein. We found that despite containing the same genes, these vectors were produced at different titers and had different effects on cell viability, transduction efficiency, and expression stability.
View Article and Find Full Text PDFThe use of broadly neutralizing antibodies (bNAbs) is a promising approach to HIV-1 treatment. In this work, we evaluate the neutralizing activity of the following HIV-1 bNAbs: VCR07-523, N6, PGDM1400, CAP256-VRC26.25, 10-1074, PGT128, 10E8, and DH511.
View Article and Find Full Text PDFModified vaccinia Ankara (MVA) is a promising vaccine vector due to its highly attenuated phenotype and good immunogenicity. However, obtaining a new recombinant MVA remains a tedious and laborious procedure involving many rounds of plaque purification. Recombinant MVA generation can be greatly improved and facilitated by different selection techniques.
View Article and Find Full Text PDF