Objective: To evaluate diagnostic image quality of ultra-high-resolution computed tomography angiography (UHR-CTA) in neurovascular imaging as compared to normal resolution CT-angiography (NR-CTA).
Material And Methods: In this retrospective single-center study brain and neck CT-angiography was performed using an ultra-high-resolution computed tomography scanner (n = 82) or a normal resolution CT scanner (NR-CTA; n = 73). Ultra-high-resolution images were reconstructed with a 1024 × 1024 matrix and a slice thickness of 0.
Rationale And Objectives: Ruptured intracranial aneurysms (IAs) are the leading cause for atraumatic subarachnoid hemorrhage. In case of aneurysm rupture, patients may face life-threatening complications and require aneurysm occlusion. Detection of the aneurysm in computed tomography (CT) imaging is therefore essential for patient outcome.
View Article and Find Full Text PDFObjectives: To assess the benefits of ultra-high-resolution CT (UHR-CT) with deep learning-based image reconstruction engine (AiCE) regarding image quality and radiation dose and intraindividually compare it to normal-resolution CT (NR-CT).
Methods: Forty consecutive patients with head and neck UHR-CT with AiCE for diagnosed head and neck malignancies and available prior NR-CT of a different scanner were retrospectively evaluated. Two readers evaluated subjective image quality using a 5-point Likert scale regarding image noise, image sharpness, artifacts, diagnostic acceptability, and assessability of various anatomic regions.
(1) : To evaluate diagnostic image quality and radiation exposure of ultra-high resolution cerebral Computed-Tomography (CT) angiography (CTA) obtained on an ultra-high resolution computed tomography scanner (UHR-CT). (2) : Fifty consecutive patients with UHR-CTA were enrolled. Image reconstruction was processed with a 1024 × 1024 matrix and a slice thickness of 0.
View Article and Find Full Text PDF