Machine learning is widely used for personalisation, that is, to tune systems with the aim of adapting their behaviour to the responses of humans. This tuning relies on quantified features that capture the human actions, and also on objective functions-that is, proxies - that are intended to represent desirable outcomes. However, a learning system's representation of the world can be incomplete or insufficiently rich, for example if users' decisions are based on properties of which the system is unaware.
View Article and Find Full Text PDF