Composites from 2D nanomaterials show uniquely high electrical, thermal and mechanical properties. Pairing their robustness with polarization rotation is needed for hyperspectral optics in extreme conditions. However, the rigid nanoplatelets have randomized achiral shapes, which scramble the circular polarization of photons with comparable wavelengths.
View Article and Find Full Text PDFThe incessant mutations of viruses, variable immune responses, and likely emergence of new viral threats necessitate multiple approaches to novel antiviral therapeutics. Furthermore, the new antiviral agents should have broad-spectrum activity and be environmentally stable. Here, we show that biocompatible tapered CuS nanoparticles (NPs) efficiently agglutinate coronaviruses with binding affinity dependent on the chirality of surface ligands and particle shape.
View Article and Find Full Text PDFOptoelectronic effects differentiating absorption of right and left circularly polarized photons in thin films of chiral materials are typically prohibitively small for their direct photocurrent observation. Chiral metasurfaces increase the electronic sensitivity to circular polarization, but their out-of-plane architecture entails manufacturing and performance trade-offs. Here, we show that nanoporous thin films of chiral nanoparticles enable high sensitivity to circular polarization due to light-induced polarization-dependent ion accumulation at nanoparticle interfaces.
View Article and Find Full Text PDFIn recent years, cryogenic electron microscopy (Cryo-EM) has revolutionized the structure determination of wet samples and especially that of biological macromolecules. The glassy-water medium in which the molecules are embedded is considered an almost environment for biological samples. The local structure of amorphous ice is known from neutron- and X-ray-diffraction studies, techniques appropriate for much larger volumes than those used in cryo-EM.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2019
The deposition of a monolayer nanoarray on the surface of a micrometer-thick substrate is demonstrated, producing rectification characteristics at the nanoscale. The experimental results show that the heterogeneity of the structure and the charge density are the two key factors affecting rectification, which was confirmed with molecular dynamic (MD) and finite element simulations. Moreover, by altering the asymmetric electrolyte environment, the fabricated heterogeneous membrane can be used in energy conversion.
View Article and Find Full Text PDFBioresour Technol
October 2016