The unique layer-stacking in two-dimensional (2D) van der Waals materials facilitates the formation of nearly degenerate phases of matter and opens novel routes for the design of low-power, reconfigurable functional materials. Electrochemical ion intercalation between stacked layers offers a promising approach to stabilize bulk metastable phases and to explore the effects of extreme carrier doping and strain. However, in situ characterization methods to study the structural evolution and dynamical functional properties of these intercalated materials remains limited.
View Article and Find Full Text PDFNonlinear optical materials possess wide applications, ranging from terahertz and mid-infrared detection to energy harvesting. Recently, the correlations between nonlinear optical responses and certain topological properties, such as the Berry curvature and the quantum metric tensor, have attracted considerable interest. Here, we report giant room-temperature nonlinearities in non-centrosymmetric two-dimensional topological materials-the Janus transition metal dichalcogenides in the 1 T' phase, synthesized by an advanced atomic-layer substitution method.
View Article and Find Full Text PDFInterlayer excitons, or bound electron-hole pairs whose constituent quasiparticles are located in distinct stacked semiconducting layers, are being intensively studied in heterobilayers of two-dimensional semiconductors. They owe their existence to an intrinsic type-II band alignment between both layers that convert these into p-n junctions. Here, we unveil a pronounced interlayer exciton (IX) in heterobilayers of metal monochalcogenides, namely, γ-InSe on ε-GaSe, whose pronounced emission is adjustable just by varying their thicknesses given their number of layers dependent direct band gaps.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2022
Arrested soft materials such as gels and glasses exhibit a slow stress relaxation with a broad distribution of relaxation times in response to linear mechanical perturbations. Although this macroscopic stress relaxation is an essential feature in the application of arrested systems as structural materials, consumer products, foods, and biological materials, the microscopic origins of this relaxation remain poorly understood. Here, we elucidate the microscopic dynamics underlying the stress relaxation of such arrested soft materials under both quiescent and mechanically perturbed conditions through X-ray photon correlation spectroscopy.
View Article and Find Full Text PDF