Publications by authors named "Felipe Senne de Oliveira Lino"

Bioethanol is a sustainable energy alternative and can contribute to global greenhouse-gas emission reductions by over 60%. Its industrial production faces various bottlenecks, including sub-optimal efficiency resulting from bacteria. Broad-spectrum removal of these contaminants results in negligible gains, suggesting that the process is shaped by ecological interactions within the microbial community.

View Article and Find Full Text PDF

Fully defined laboratory media have the advantage of allowing for reproducibility and comparability of results among different laboratories, as well as being suitable for the investigation of how different individual components affect microbial or process performance. We developed a fully defined medium that mimics sugarcane molasses, a frequently used medium in different industrial processes where yeast is cultivated. The medium, named 2SMol, builds upon a previously published semi-defined formulation and is conveniently prepared from some stock solutions: C-source, organic N, inorganic N, organic acids, trace elements, vitamins, Mg + K, and Ca.

View Article and Find Full Text PDF

Sugarcane ethanol fermentation represents a simple microbial community dominated by S. cerevisiae and co-occurring bacteria with a clearly defined functionality. In this study, we dissect the microbial interactions in sugarcane ethanol fermentation by combinatorically reconstituting every possible combination of species, comprising approximately 80% of the biodiversity in terms of relative abundance.

View Article and Find Full Text PDF

Candida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance.

View Article and Find Full Text PDF
Article Synopsis
  • * The study found that many beneficial fungal-bacterial interactions were lost post-antibiotic treatment, indicating a shift from mutualism to competition among these microorganisms.
  • * Certain bacterial strains can help inhibit the pathogenic fungus Candida albicans, suggesting that gut bacteria play a crucial role in controlling fungal infections through their metabolites.
View Article and Find Full Text PDF

Background: Developing novel microbial cell factories requires careful testing of candidates under industrially relevant conditions. However, this frequently occurs late during the strain development process. The availability of laboratory media that simulate industrial-like conditions might improve cell factory development, as they allow for strain construction and testing in the laboratory under more relevant conditions.

View Article and Find Full Text PDF

The article "Industrial antifoam agents impair ethanol fermentation and induce stress responses in yeast cells" was originally published Online First without open access. After publication in volume 101, issue 22, page 8237-8248, the author decided to opt for Open Choice and to make the article an open access publication.

View Article and Find Full Text PDF

The Brazilian sugarcane industry constitutes one of the biggest and most efficient ethanol production processes in the world. Brazilian ethanol production utilizes a unique process, which includes cell recycling, acid wash, and non-aseptic conditions. Process characteristics, such as extensive CO generation, poor quality of raw materials, and frequent contaminations, all lead to excessive foam formation during fermentations, which is treated with antifoam agents (AFA).

View Article and Find Full Text PDF