Alzheimer's disease (AD) is the most common neurodegenerative dementia worldwide. AD is a multifactorial disease that causes a progressive decline in memory and function precipitated by toxic beta-amyloid (Aβ) proteins, a key player in AD pathology. In 2022, 6.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a brain disorder that eventually causes memory loss and the ability to perform simple cognitive functions; research efforts within pharmaceuticals and other medical treatments have minimal impact on the disease. Our preliminary biological studies showed that Repeated Electromagnetic Field Stimulation (REFMS) applying an EM frequency of 64 MHz and a specific absorption rate (SAR) of 0.4 - 0.
View Article and Find Full Text PDFIn this paper, we review the social determinants of health in older adults and their complex interrelationship with medical diseases. Also, we provide recommendations to address these determinants in the integrated healthcare plan. The social determinants in older adults and its influence in health outcomes have been studied for decades.
View Article and Find Full Text PDFIn this study, we performed a numerical analysis of a novel EMF Birdcage wearable device for the treatment of Alzheimer's disease (AD). We designed the new device to generate and radiate a frequency of 64 MHz and a specific absorption rate (SAR) of 0.6 W/kg to a simulated human brain tissue.
View Article and Find Full Text PDFWe provide a multidimensional sequence of events that describe the electromagnetic field (EMF) stimulation and biological system interaction. We describe this process from the quantum to the molecular, cellular, and organismal levels. We hypothesized that the sequence of events of these interactions starts with the oscillatory effect of the repeated electromagnetic stimulation (REMFS).
View Article and Find Full Text PDFIn this paper, we follow up with our preliminary biological studies that showed that Repeated electromagnetic field stimulation (REMFS) decreased the toxic amyloid-beta (A) levels, which is considered to be the cause of Alzheimer's disease (AD). The REMFS parameters of these exposures were a frequency of 64 MHz and a Specific absorption rate (SAR) of 0.4 to 0.
View Article and Find Full Text PDFIntroduction: Mild traumatic brain injury (mTBI) is a common injury, with nearly 3 - 4 million cases annually in the United States alone. Neuroimaging in patients with mTBI provides little benefit, and is usually not indicated as the diagnosis is primarily clinical. It is theorized that microvascular trauma to the brain may be present in mTBI, that may not be captured by routine MRI and CT scans.
View Article and Find Full Text PDFLate Onset Alzheimer's Disease is the most common cause of dementia, characterized by extracellular deposition of plaques primarily of amyloid-β (Aβ) peptide and tangles primarily of hyperphosphorylated tau protein. We present data to suggest a noninvasive strategy to decrease potentially toxic Aβ levels, using repeated electromagnetic field stimulation (REMFS) in primary human brain (PHB) cultures. We examined effects of REMFS on Aβ levels (Aβ40 and Aβ42, that are 40 or 42 amino acid residues in length, respectively) in PHB cultures at different frequencies, powers, and specific absorption rates (SAR).
View Article and Find Full Text PDFBackground: The rapid development of a variety of devices that emit Radiofrequency Electromagnetic fields (RF-EMF) has sparked growing interest in their interaction with biological systems and the beneficial effects on human health. As a result, investigations have been driven by the potential for therapeutic applications, as well as concern for any possible negative health implications of these EM energies [1-4]. Recent results have indicated specific tuning of experimental and clinical RF exposure may lead to their clinical application toward beneficial health outcomes [5].
View Article and Find Full Text PDFLate-onset Alzheimer's disease (LOAD) is the most common neurodegenerative disorder in older adults, affecting over 50% of those over age 85. Aging is the most important risk factor for the development of LOAD. Aging is associated with the decrease in the ability of cells to cope with cellular stress, especially protein aggregation.
View Article and Find Full Text PDFModern medicine is directed towards the prevention, detection and cure of individual diseases. Yet, current medical models inadequately describe aging-associated diseases. We now know that failure in longevity pathways including oxidative stress, multisystem dysregulation, inflammation, sarcopenia, protein deposition and atherosclerosis are associated with age-related diseases.
View Article and Find Full Text PDFA new consensus of gerontologists proposes that delay of biological senescence is the most potent public health measure for preventing chronic disease in late life. At the most fundamental level, cellular aging is characterized by a decline in repair and homeostatic systems. Thus, interventions that protect or rejuvenate these cellular systems hold significant promise for preventing or delaying the onset of age-related diseases.
View Article and Find Full Text PDFHormesis may result when mild repetitive stress increases cellular defense against diverse injuries. This process may also extend in vitro cellular proliferative life span as well as delay and reverse some of the age-dependent changes in both replicative and non-replicative cells. This study evaluated the potential hormetic effect of non-thermal repetitive electromagnetic field shock (REMFS) and its impact on cellular aging and mortality in primary human T lymphocytes and fibroblast cell lines.
View Article and Find Full Text PDFHomocysteine has been associated with the most common age-related diseases but never associated with the acceleration of the aging process. This theoretical paper will try to demonstrate the pro-aging effects of homocysteine at the molecular, cellular, and organ level. High homocysteine levels in homocystinuria are associated with premature disease of the cardiovascular, skeletal, neurological, and other systems.
View Article and Find Full Text PDF