Publications by authors named "Felipe P L Melo"

Anthropogenic landscape modification may lead to the proliferation of a few species and the loss of many. Here we investigate mechanisms and functional consequences of this winner-loser replacement in six human-modified Amazonian and Atlantic Forest regions in Brazil using a causal inference framework. Combining floristic and functional trait data for 1,207 tree species across 271 forest plots, we find that forest loss consistently caused an increased dominance of low-density woods and small seeds dispersed by endozoochory (winner traits) and the loss of distinctive traits, such as extremely dense woods and large seeds dispersed by synzoochory (loser traits).

View Article and Find Full Text PDF

Extreme weather has made 2023 virtually certain to be the warmest year on record, signaling unprecedented climate and biodiversity crises. Brazil, the world’s most biodiverse country, with two hotspots and complex social and economic layers, has experienced escalating environmental degradation over the past years. Alarming rates of native vegetation loss, wildfires, severe and prolonged droughts, and heatwaves have adversely impacted several Brazilian ecosystems and societies.

View Article and Find Full Text PDF

Tropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values.

View Article and Find Full Text PDF

Community assembly arguably drives the provision of ecosystem services because they critically depend on which and how species coexist. We examine conspicuous cases of 'winner and loser' replacements (WLRs) in tropical forests to provide a framework integrating drivers, impacts on ecological organization, and reconfiguration of ecosystem service provisioning. Most WLRs involve native species and result from changes in resource availability rather than from altered competition among species.

View Article and Find Full Text PDF

Banks-Leite et al. (2021) claim that our suggestion of preserving ≥ 40% forest cover lacks evidence and can be problematic. We find these claims unfounded, and discuss why conservation planning urgently requires valuable, well-supported and feasible general guidelines like the 40% criterion.

View Article and Find Full Text PDF

Agriculture and development transform forest ecosystems to human-modified landscapes. Decades of research in ecology have generated myriad concepts for the appropriate management of these landscapes. Yet, these concepts are often contradictory and apply at different spatial scales, making the design of biodiversity-friendly landscapes challenging.

View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF

Protected areas are an important strategy to safeguard biodiversity. However, if social development is not considered, biological conservation targets may not be achieved. In this empirical study, we assess the relationship between poverty and conservation goals in dry forests within a 62,000-ha Brazilian National Park (Caatinga biome).

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the biogeographic affinities of tropical forests helps explain regional differences in their structure, diversity, and responses to global changes.
  • The study classifies the world's tropical forests into five main floristic regions based on their phylogenetic relationships: Indo-Pacific, Subtropical, African, American, and Dry forests.
  • Findings challenge the traditional division of tropical forests and suggest a connection between northern-hemisphere Subtropical forests in Asia and America, as well as the existence of a global dry forest region.
View Article and Find Full Text PDF

Old-growth tropical forests are being extensively deforested and fragmented worldwide. Yet forest recovery through succession has led to an expansion of secondary forests in human-modified tropical landscapes (HMTLs). Secondary forests thus emerge as a potential repository for tropical biodiversity, and also as a source of essential ecosystem functions and services in HMTLs.

View Article and Find Full Text PDF

The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e.

View Article and Find Full Text PDF

Amazonian rainforests sustain some of the richest tree communities on Earth, but their ecological and evolutionary responses to human threats remain poorly known. We used one of the largest experimental datasets currently available on tree dynamics in fragmented tropical forests and a recent phylogeny of angiosperms to test whether tree communities have lost phylogenetic diversity since their isolation about two decades previously. Our findings revealed an overall trend toward phylogenetic impoverishment across the experimentally fragmented landscape, irrespective of whether tree communities were in 1-ha, 10-ha, or 100-ha forest fragments, near forest edges, or in continuous forest.

View Article and Find Full Text PDF

Rainforests are undergoing severe deforestation and fragmentation worldwide. A huge amount of small forest patches are being created, but their value in conserving biodiversity and forest structure is still controversial. Here, we demonstrate that in a species-rich and moderately-managed Mexican tropical landscape small rainforest patches (<100 ha) can be highly valuable for the conservation of tree diversity and forest structure.

View Article and Find Full Text PDF

With the decreasing affordability of protecting large blocks of pristine tropical forests, ecologists have staked their hopes on the management of human-modified landscapes (HMLs) to conserve tropical biodiversity. Here, we examine key forces affecting the dynamics of HMLs, and propose a framework connecting human disturbances, land use, and prospects for both tropical biodiversity and ecosystem services. We question the forest transition as a worldwide source of new secondary forest; the role played by regenerating (secondary) forest for biodiversity conservation, and the resilience of HMLs.

View Article and Find Full Text PDF