In this work, the pressure- and temperature-dependent reaction rate constants for the hydrogen abstraction and addition of hydroxyl radicals to the unsaturated cyclopentene were studied. Geometries and vibrational frequencies of reactants, products, and transition states were calculated using density functional theory, with single-point energy corrections determined at the domain-based local pair natural orbital-coupled-cluster single double triple/cc-pVTZ-F12 level. The high-pressure limit rate constants were calculated using the canonical variational transition state theory with the small-curvature tunneling approximation.
View Article and Find Full Text PDFAlkanes are a fundamental part in empirical force fields (FF) not only due to their technological relevance, but also due to the prevalence of alkane moieties in organic molecules, e.g., compounds containing a saturated carbon chain.
View Article and Find Full Text PDFN-Heptane and 2,2,4-trimethylpentane (isooctane) are the key species in the modeling of ignition of hydrocarbon-based fuel formulations. Isooctane is knock-resistant whereas n-heptane is a very knock-prone hydrocarbon. It has been suggested that interconversion of their associated alkylperoxy and hydroperoxyalkyl species via hydrogen-transfer isomerization reaction is the key step to understand their different knocking behavior.
View Article and Find Full Text PDFProtonated methane, CH(5)(+), is a key reactive intermediate in hydrocarbon chemistry and a borderline case for chemical structure theory, being the simplest example of hypercoordinated carbon. Early quantum mechanical calculations predicted that the properties of this species could not be associated with only one structure, because it presents serious limitations of the Born-Oppenheimer approximation. However, ab initio molecular dynamics and diffusion Monte Carlo calculations showed that the most populated structure could be pictured as a CH(3) tripod linked to a H(2) moiety.
View Article and Find Full Text PDF