ACS Omega
June 2024
Glycosylation represents a major chemical challenge; while it is one of the most common reactions in Nature, conventional chemistry struggles with stereochemistry, regioselectivity, and solubility issues. In contrast, family 1 glycosyltransferase (GT1) enzymes can glycosylate virtually any given nucleophilic group with perfect control over stereochemistry and regioselectivity. However, the appropriate catalyst for a given reaction needs to be identified among the tens of thousands of available sequences.
View Article and Find Full Text PDFBackground: Xylans are polysaccharides that are naturally abundant in agricultural by-products, such as cereal brans and straws. Microbial degradation of arabinoxylan is facilitated by extracellular esterases that remove acetyl, feruloyl, and p-coumaroyl decorations. The bacterium Ruminiclostridium cellulolyticum possesses the Xua (xylan utilization associated) system, which is responsible for importing and intracellularly degrading arabinoxylodextrins.
View Article and Find Full Text PDFSynthetic dye bioremediation is a topic of great importance since these pollutants possess toxic effects, and huge quantities of them are being discharged into water bodies. Ligninolytic enzyme treatment stands out for being a cost-effective methodology, capable of obtaining high decolorization levels. In this work, a laccase enzyme treatment was evaluated to effectively perform a cycle of dye bioremediation.
View Article and Find Full Text PDFIndustrial pollution is a great concern for modern society and developing cyclic processes is one of the major challenges. As far as we know, this work is the first to report the use of multiple white-rot fungi species for degrading a binary mixture of anionic dyes under solid state fermentation (SSF) conditions and a further physicochemical characterization of the residual biomass. First, eight white-rot fungi decolorized the dye mixture of brilliant blue FCF and allura red AC adsorbed onto corncob, reaching decolorizations between 11.
View Article and Find Full Text PDF