Publications by authors named "Felipe Ledur Ongaratto"

The bovine IGF2 locus is a genomic region with alternative transcripts controlled by five promoters (P0, P1, P2, P3 and P4). As transcriptional regulation can affect messenger RNA (mRNA) stability and translation, and thus, subsequent biological effects, this study evaluated the bovine IGF2 promoter-specific expression patterns in oocytes and pre-implantation embryos produced in vitro by our standard IVP procedures. Immature and matured oocytes, and pre-implantation embryos at the 1-, 2-, 4-, 8- and 16-cell, and at early morula, compact morula, blastocyst and expanded blastocyst stages were collected in three pools of five structures per stage, in four replicates.

View Article and Find Full Text PDF

The present study evaluated the effect of binder of sperm protein 1 (BSP1) and/or heparin on in vitro bovine capacitation and fertilization rates using epididymal and ejaculated bovine sperm. Frozen-thawed sperm were selected and used in the following treatments. Control group: Fert-TALP medium without heparin; heparin (HEP) group: Fert-TALP with heparin (10 UI/ml); BSP1 group: Fert-TALP medium with BSP1 (10 µg/ml for ejaculated sperm; 40 µg/ml for epididymal sperm); HEP + BSP1 group: Fert-TALP medium with heparin (5 UI/ml) and BSP1 (5 µg/ml for ejaculated sperm; 20 µg/ml for epididymal sperm) and determined in vitro capacitation rates in different interval times (0, 15, 30 and 60 min) using the chlortetracycline fluorescence (CTC) method.

View Article and Find Full Text PDF

Important genomic imprinting changes usually occur following the in vitro production (IVP) of bovine embryos, especially in the imprinting pattern of components of the IGF system. This study aimed to evaluate the effects of a transient episomal overexpression of the IGF2 gene in bovine IVP embryos following embryo cytoplasmic microinjection (CMI) at the 1-cell stage on embryo survival, early and late developmental kinetics and morphological quality up to Day 7 of development. Selected cumulus-oocyte complexes (COCs) were matured and fertilized in vitro and subsequently segregated into six experimental groups: non-CMI control group and five CMI groups at increasing doses (0, 10, 20, 40 and 80 ng/μl) of a GFP vector built for the episomal expression of bovine IGF2.

View Article and Find Full Text PDF

Nuclear reprogramming in somatic cell cloning is one of the key factors for proper development, with variations in the protocol appearing to improve cloning efficiency. This study aimed to determine the effects of two fusion-activation intervals and the aggregation of bovine cloned embryos on subsequent in vitro and in vivo development. Zygotes produced by handmade cloning were exposed to two fusion-activation intervals (2 h or 4 h), and then cultured in microwells either individually (1 × 100%) or after aggregation of two structures (2 × 100%).

View Article and Find Full Text PDF

Cloning by somatic cell nuclear transfer (SCNT) is characterized by low efficiency and the occurrence of developmental abnormalities, which are rather poorly studied phenomena in goats. This study aimed at comparing overall SCNT efficiency in goats by using in vitro-matured (IVM) or in vivo-matured oocytes and fibroblast donor cells (mock transfected, transgenic, or wild type), also characterizing symptoms of the Abnormal Offspring Syndrome (AOS) in development, comparing results with pregnancies produced by artificial insemination (AI) and in vivo-derived (IVD) embryos. The SCNT group had lower pregnancy rate (18.

View Article and Find Full Text PDF

Gaucher disease (GD) is an orphan disease characterized by the lack or incapacity of glucocerebrosidase (hGCase) to properly process glucosylceramide, resulting in its accumulation in vital structures of the human body. Enzyme replacement therapy supplies hGCase to GD patients with a high-cost recombinant enzyme produced in vitro in mammalian or plant cell culture. In this study, we produced hGCase through the direct injection of recombinant adenovirus in the mammary gland of a non-transgenic goat.

View Article and Find Full Text PDF