Publications by authors named "Felipe L Penaranda-Foix"

The identification of the minerals composing rocks and their dielectric characterization is essential for the utilization of microwave energy in the rock industry. This paper describes the use of a near-field scanning microwave microscope with enhanced sensitivity for non-invasive measurements of permittivity maps of rock specimens at the micrometer scale in non-contact mode. The microwave system comprises a near-field probe, an in-house single-port vectorial reflectometer, and all circuitry and software needed to make a stand-alone, portable instrument.

View Article and Find Full Text PDF

This paper describes the use of microwave technology to identify anti-counterfeiting markers on banknotes. The proposed method is based on a robust near-field scanning microwave microscope specially developed to measure permittivity maps of heterogeneous paper specimens at the micrometer scale. The equipment has a built-in vector network analyzer to measure the reflection response of a near-field coaxial probe, which makes it a standalone and portable device.

View Article and Find Full Text PDF

Mineral transformations of the gypsum-anhydrite system under microwave heating have been studied using in situ dielectric thermal analysis (MW-DETA) and Raman spectroscopy simultaneously. The dielectric properties of samples that were measured under microwave heating provided thorough information about the dynamics of the gypsum-anhydrite system transformations and its significance from the mineralogical point of view. In particular, the MW-DETA technique revealed a new intermediate phase with a γ-anhydrite structure.

View Article and Find Full Text PDF

Microwave-assisted processes have recognized advantages over more conventional heating techniques. However, the effects on the materials' microstructure are still a matter of study, due to the complexity of the interaction between microwaves and matter, especially at high temperatures. Recently developed advanced microwave instrumentation allows the study of high temperature microwave heating processes in a way that was not possible before.

View Article and Find Full Text PDF

Waveguide structures are very popular in the microwave power industry due to their power handling capabilities. Modal expansion of the waveguide fields and application of the circuit theory allow for the division of a complex device into several simpler sections which can be analyzed separately with the best suited method. The modal techniques can be divided into two groups--those which analyze junctions or discontinuities and those which examine propagation characteristics.

View Article and Find Full Text PDF