Publications by authors named "Felipe Cervantes"

Experiments for space and ground-based gravitational wave detectors often require a large dynamic range interferometric position readout of test masses with 1 pm/√Hz precision over long time scales. Heterodyne interferometer schemes that achieve such precisions are available, but they require complex optical set-ups, limiting their scalability for multiple channels. This article presents the first experimental results on deep frequency modulation interferometry, a new technique that combines sinusoidal laser frequency modulation in unequal arm length interferometers with a non-linear fit algorithm.

View Article and Find Full Text PDF

We present the development of an advanced phasemeter for the deep phase modulation interferometry technique. This technique aims for precise length measurements with a high dynamic range using little optical hardware. The advanced phasemeter uses fast ADCs and an FPGA to implement a design of multiple single-bin Fourier transforms running at high sampling rates.

View Article and Find Full Text PDF

Interferometric gravitational wave detectors with an unequal and time-varying arm length configuration like the Laser Interferometer Space Antenna rely on time-delay interferometry (TDI) for laser frequency noise subtraction. However, the TDI algorithm requires a laser ranging scheme with meter accuracy over a five million kilometer arm length. At the end of each arm only about 100 pW of light power will be detected for gravitational wave measurements and only 1% of this power can be used for laser ranging in order to avoid degradation in the phase stability of the science measurements.

View Article and Find Full Text PDF

We present a real-time differential phase-front detector sensitive to better than 3 mrad rms, which corresponds to a precision of approximately 500 pm. This detector performs a spatially resolving measurement of the phase front of a heterodyne interferometer, with heterodyne frequencies up to approximately 10 kHz. This instrument was developed as part of the research for the Laser Interferometer Space Antenna Technology Package interferometer and will assist in the manufacture of its flight model.

View Article and Find Full Text PDF