Publications by authors named "Felipe Albornoz"

Background: Arbuscular mycorrhizas (AM) are the most widespread terrestrial symbiosis and are both a key determinant of plant health and a major contributor to ecosystem processes through their role in biogeochemical cycling. Until recently, it was assumed that the fungi which form AM comprise the subphylum Glomeromycotina (G-AMF), and our understanding of the diversity and ecosystem roles of AM is based almost exclusively on this group. However recent evidence shows that fungi which form the distinctive 'fine root endophyte' (FRE) AM morphotype are members of the subphylum Mucoromycotina (M-AMF), so that AM symbioses are actually formed by two distinct groups of fungi.

View Article and Find Full Text PDF
Article Synopsis
  • The study analyzes soil fungal diversity globally by examining over 4,000 topsoil samples from various ecosystems, revealing how different environmental factors influence fungal communities.
  • It demonstrates the effects of temperature and precipitation on local species richness (alpha diversity) and how these factors contribute to variations in fungal composition and evolutionary relationships (beta and phylogenetic diversity).
  • The research integrates fungal diversity into global biodiversity frameworks, providing maps and insights that can aid in conservation efforts and ecological studies worldwide.
View Article and Find Full Text PDF

Current literature suggests ecological niche differentiation between co-occurring Mucoromycotinian arbuscular mycorrhizal fungi (M-AMF) and Glomeromycotinian AMF (G-AMF), but experimental evidence is limited. We investigated the influence of soil age, water availability (wet and dry), and plant species (native Microlaena stipoides and exotic Trifolium subterraneum) on anatomical root colonisation and DNA profiles of M-AMF and G-AMF under glasshouse conditions. We grew seedlings of each species in soils collected from the four stages of a soil chronosequence, where pH decreases from the youngest to oldest stages, and phosphorus (P) is low in the youngest and oldest, but high in the intermediate stages.

View Article and Find Full Text PDF

Fungi are highly diverse organisms, which provide multiple ecosystem services. However, compared with charismatic animals and plants, the distribution patterns and conservation needs of fungi have been little explored. Here, we examined endemicity patterns, global change vulnerability and conservation priority areas for functional groups of soil fungi based on six global surveys using a high-resolution, long-read metabarcoding approach.

View Article and Find Full Text PDF

Globally, agricultural land-use negatively affects soil biota that contribute to ecosystem functions such as nutrient cycling, yet arbuscular mycorrhizal fungi (AMF) are promoted as essential components of agroecosystems. Arbuscular mycorrhizal fungi include Glomeromycotinian AMF (G-AMF) and the arbuscule-producing fine root endophytes, recently re-classified into the Endogonales order within Mucoromycotina. The correct classification of Mucoromycotinian AMF (M-AMF) and the availability of new molecular tools can guide research to better the understanding of their diversity and ecology.

View Article and Find Full Text PDF

Fine root endophytes (FRE) were traditionally considered a morphotype of arbuscular mycorrhizal fungi (AMF), but recent genetic studies demonstrate that FRE belong within the subphylum Mucoromycotina, rather than in the subphylum Glomeromycotina with the AMF. These findings prompt enquiry into the fundamental ecology of FRE and AMF. We sampled FRE and AMF in roots of Trifolium subterraneum from 58 sites across temperate southern Australia.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates fine root endophytes (FRE) that produce arbuscules, discovering nutrient concentrations in their structures and testing cryo-scanning electron microscopy (cryoSEM) for analysis.
  • The results show that the hyphae of FRE are notably thin, with developed arbuscules containing higher phosphorus levels compared to older or non-colonized structures, while senesced arbuscules exhibit increased calcium and magnesium.
  • The findings suggest that FRE share similar characteristics with arbuscular mycorrhizal fungi (AMF), indicating potential similarities in how these fungi interact with host plants.
View Article and Find Full Text PDF

Abiotic and biotic drivers of co-occurring fungal functional guilds across regional-scale environmental gradients remain poorly understood. We characterized fungal communities using Illumina sequencing from soil cores collected across three Neotropical rainforests in Panama that vary in soil properties and plant community composition. We classified each fungal OTU into different functional guilds, namely plant pathogens, saprotrophs, arbuscular mycorrhizal (AM), or ectomycorrhizal (ECM).

View Article and Find Full Text PDF

The design and implementation of a mobile gamma spectrometry system to in vivo measure the accumulated activity of I in whole body and thyroid of patients with thyroid diseases are presented in this work. This system may be used for both pre-therapeutic and post-therapeutic dosimetry calculations. It consists of a detector and a movable support that allows its movement from one place to another.

View Article and Find Full Text PDF

Ectomycorrhizal (ECM) fungal communities covary with host plant communities along soil fertility gradients, yet it is unclear whether this reflects changes in host composition, fungal edaphic specialization or priority effects during fungal community establishment. We grew two co-occurring ECM plant species (to control for host identity) in soils collected along a 2-million-year chronosequence representing a strong soil fertility gradient and used soil manipulations to disentangle the effects of edaphic properties from those due to fungal inoculum. Ectomycorrhizal fungal community composition changed and richness declined with increasing soil age; these changes were linked to pedogenesis-driven shifts in edaphic properties, particularly pH and resin-exchangeable and organic phosphorus.

View Article and Find Full Text PDF

Changes in soil nutrient availability during long-term ecosystem development influence the relative abundances of plant species with different nutrient-acquisition strategies. These changes in strategies are observed at the community level, but whether they also occur within individual species remains unknown. Plant species forming multiple root symbioses with arbuscular mycorrhizal (AM) fungi, ectomycorrhizal (ECM) fungi, and nitrogen-(N) fixing microorganisms provide valuable model systems to examine edaphic controls on symbioses related to nutrient acquisition, while simultaneously controlling for plant host identity.

View Article and Find Full Text PDF