Publications by authors named "Felipe Aguilera"

Patients present a wide range of clinical severities in response severe acute respiratory syndrome coronavirus 2 infection, but the underlying molecular and cellular reasons why clinical outcomes vary so greatly within the population remains unknown. Here, we report that negative clinical outcomes in severely ill patients were associated with divergent RNA transcriptome profiles in peripheral immune cells compared with mild cases during the first weeks after disease onset. Protein-protein interaction analysis indicated that early-responding cytotoxic natural killer cells were associated with an effective clearance of the virus and a less severe outcome.

View Article and Find Full Text PDF

has emerged as a significant human pathogen, acquiring multiple antibiotic resistance genes, including carbapenemases. This study focuses on characterizing the plasmids harboring the and (Y) genes in two carbapenem-resistant isolates (UCO-553 and UCO-554) obtained in Chile during the COVID-19 pandemic. : Antibiotic susceptibility testing was conducted on UCO-553 and UCO-554.

View Article and Find Full Text PDF

Terebriporidae is one of the four extant endolithic ctenostome bryozoan families, with colonies immersed into carbonate substrates like molluscan shells. This monogeneric family comprises 17 species, with 11 extant and 6 fossil species. It is currently considered closely related to vesicularioid ctenostomes, a group characterized by colonies interconnected by polymorphic stolons and a distinct gizzard as part of their digestive systems.

View Article and Find Full Text PDF

While understanding the genetic underpinnings of osteogenesis has far-reaching implications for skeletal diseases and evolution, a comprehensive characterization of the osteoblastic regulatory landscape in non-mammalian vertebrates is still lacking. Here, we compared the ATAC-Seq profile of Xenopus tropicalis (Xt) osteoblasts to a variety of non mineralizing control tissues, and identified osteoblast-specific nucleosome free regions (NFRs) at 527 promoters and 6747 distal regions. Sequence analyses, Gene Ontology, RNA-Seq and ChIP-Seq against four key histone marks confirmed that the distal regions correspond to bona fide osteogenic transcriptional enhancers exhibiting a shared regulatory logic with mammals.

View Article and Find Full Text PDF
Article Synopsis
  • - Ctenostomes are difficult to classify due to their uncalcified structure and endolithic lifestyle, with four recent families identified that reside in hard substrates like mollusk shells.
  • - The family Penetrantiidae has been the subject of debate regarding its classification and exhibits significant variation, making species identification challenging.
  • - Through sequencing mitochondrial genomes and nuclear markers from various ctenostome species, the study reveals the Penetrantiidae as a distinct group closely related to other families, providing new insights into bryozoan classification and evolutionary relationships.
View Article and Find Full Text PDF

The quantity and accuracy of satellite-geodetic measurements have increased over time, revolutionizing the monitoring of tectonic processes. Global Navigation Satellite System (GNSS) and satellite radar signals provide observations beyond ground deformation, including how earthquake and tsunami processes affect variations in the ionosphere. Here, we study the Hunga Tonga Hunga Ha'apai (HTHH) volcanic eruption 2022 and its associated tsunami propagation with the analysis GNSS derived Total Electron Content (TEC), Synthetic Aperture Radar (SAR) Sentinel-1 data, complemented with tide gauge observations.

View Article and Find Full Text PDF

The aim of this study was to investigate the genomic features of a carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKp) isolate (K-2157) collected in Chile. Antibiotic susceptibility was determined using the disk diffusion and broth microdilution methods. Whole-genome sequencing (WGS) and hybrid assembly were performed, using data generated on the Illumina and Nanopore platforms.

View Article and Find Full Text PDF

Understanding at microscopic level the generation of contents in an online social network (OSN) is highly desirable for an improved management of the OSN and the prevention of undesirable phenomena, such as online harassment. Content generation, i.e.

View Article and Find Full Text PDF

Echinoids are key components of modern marine ecosystems. Despite a remarkable fossil record, the emergence of their crown group is documented by few specimens of unclear affinities, rendering their early history uncertain. The origin of sand dollars, one of its most distinctive clades, is also unclear due to an unstable phylogenetic context.

View Article and Find Full Text PDF

The vertebral column, or spine, provides mechanical support and determines body axis posture and motion. The most common malformation altering spine morphology and function is adolescent idiopathic scoliosis (AIS), a three-dimensional spinal deformity that affects approximately 4% of the population worldwide. Due to AIS genetic heterogenicity and the lack of suitable animal models for its study, the etiology of this condition remains unclear, thus limiting treatment options.

View Article and Find Full Text PDF

Fertilization by multiple sperm leads to lethal chromosomal number abnormalities, failed embryo development, and miscarriage. In some vertebrate and invertebrate eggs, the so-called cortical reaction contributes to their activation and prevents polyspermy during fertilization. This process involves biogenesis, redistribution, and subsequent accumulation of cortical granules (CGs) at the female gamete cortex during oogenesis.

View Article and Find Full Text PDF

Pearls are highly prized biomineralized gemstones produced by molluscs. The appearance and mineralogy of cultured pearls can vary markedly, greatly affecting their commercial value. To begin to understand the role of pearl sacs-organs that form in host oysters from explanted mantle tissues that surround and synthesize pearls-we undertook transcriptomic analyses to identify genes that are differentially expressed in sacs producing pearls with different surface and structural characteristics.

View Article and Find Full Text PDF

Raspberry ( sp.) is a berries fruit with an ongoing agricultural and commercial interest due to its high contents of flavonoids and nutrients beneficial for human health. The growing demand for raspberries is facing great challenges associated mainly with the dispersal of diseases, which produces a decrease in productivity and fruit quality.

View Article and Find Full Text PDF

Gastrotrichs-'hairy bellies'-are microscopic free-living animals inhabiting marine and freshwater habitats. Based on morphological and early molecular analyses, gastrotrichs were placed close to nematodes, but recent phylogenomic analyses have suggested their close relationship to flatworms (Platyhelminthes) within Spiralia. Small non-coding RNA data on e.

View Article and Find Full Text PDF

The advent of high-throughput sequencing (HTS) technologies has revolutionized the way we understand the transformation of genetic information into morphological traits. Elucidating the network of interactions between genes that govern cell differentiation through development is one of the core challenges in genome research. These networks are known as developmental gene regulatory networks (dGRNs) and consist largely of the functional linkage between developmental control genes, cis-regulatory modules, and differentiation genes, which generate spatially and temporally refined patterns of gene expression.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied Tetraselmis sp. M8 to understand how lipid pathways contribute to rapid triacylglyceride buildup after nitrogen exhaustion.
  • RNA-Seq and real-time PCR showed a significant change in gene expression related to fatty acid/triacylglyceride production and breakdown during different growth phases.
  • The findings suggest that increased lipid accumulation occurs due to reduced breakdown of lipids and enhanced production during the stationary phase, independent of the DGAT gene, which is typically important for lipid storage.
View Article and Find Full Text PDF

Molluscs fabricate shells of incredible diversity and complexity by localized secretions from the dorsal epithelium of the mantle. Although distantly related molluscs express remarkably different secreted gene products, it remains unclear if the evolution of shell structure and pattern is underpinned by the differential co-option of conserved genes or the integration of lineage-specific genes into the mantle regulatory program. To address this, we compare the mantle transcriptomes of 11 bivalves and gastropods of varying relatedness.

View Article and Find Full Text PDF

An external skeleton is an essential part of the body plan of many animals and is thought to be one of the key factors that enabled the great expansion in animal diversity and disparity during the Cambrian explosion. Molluscs are considered ideal to study the evolution of biomineralization because of their diversity of highly complex, robust and patterned shells. The molluscan shell forms externally at the interface of animal and environment, and involves controlled deposition of calcium carbonate within a framework of macromolecules that are secreted from the dorsal mantle epithelium.

View Article and Find Full Text PDF
Article Synopsis
  • Tyrosinase is an important copper-containing enzyme that facilitates the conversion of certain molecules in biological processes like pigment production and shell formation.
  • Recent research shows that the tyrosinase gene family has significantly expanded in pearl oysters and Pacific oysters, indicating different evolutionary paths among these species.
  • Gene expression studies reveal that these tyrosinase genes are highly active in the mantle, which is essential for shell fabrication, and that even closely related oysters can express these genes differently.
View Article and Find Full Text PDF

Background: Tyrosinases, tyrosinase-related proteins, catechol oxidases and hemocyanins comprise the type-3 copper protein family and are involved in a variety of biological processes, including pigment formation, innate immunity and oxygen transport. Although this family is present in the three domains of life, its origin and early evolution are not well understood. Previous analyses of type-3 copper proteins largely have focussed on specific animal and plant phyla.

View Article and Find Full Text PDF

The lysine (K)-rich mantle protein (KRMP) and shematrin protein families are unique to the organic matrices of pearl oyster shells. Similar to other proteins that are constituents of tough, extracellular structures, such as spider silk, shematrins and KRMPs, contain repetitive, low-complexity domains (RLCDs). Comprehensive analysis of available gene sequences in three species of pearl oyster using BLAST and hidden Markov models reveal that both gene families have large memberships in these species.

View Article and Find Full Text PDF

Melatonin, an endogenous hormone, is used as an antioxidant drug in doses quite higher than the endogenous circulating levels of this hormone. Hepatic endoplasmic reticulum contains the cytochrome P450 (CYP450) system, which catalyzes one biotransformation pathway of melatonin; this organelle is also one of the main sources of reactive oxygen species in cells. Therefore, we proposed that the antioxidant activity of this hormone may have a biological relevance in the organelle where it is biotransformed.

View Article and Find Full Text PDF