Annu Int Conf IEEE Eng Med Biol Soc
May 2009
The innovative arbitrary waveform defibrillator for animal research presented in this paper is based on two power linear amplifiers in bridge configuration. It is capable of delivering 10 J shocks of arbitrary shape and duration. The system can be used to test new waveforms by comparing them to traditional ones, in in-vitro experiments.
View Article and Find Full Text PDFBackground: Functional reentry in the heart takes the form of spiral waves. Drifting spiral waves can become pinned to anatomic obstacles and thus attain stability and persistence. Lidocaine is an antiarrhythmic agent commonly used to treat ventricular tachycardia clinically.
View Article and Find Full Text PDFObjectives: The purpose of this study is to characterize the changes in vulnerability to electric shocks during phase 1A of global ischemia in the rabbit ventricles and to determine the mechanisms responsible for these changes.
Background: Mechanisms responsible for the changes in cardiac vulnerability over the course of ischemia phase 1A remain poorly understood. The lack of understanding results from the rapid ischemic change in cardiac electrophysiologic properties, which renders experimental evaluation of vulnerability difficult.
Conventional ambulatory electrocardiogram (ECG) (Holter) monitoring involves 2 or 3 surface leads recorded with electrode positions and signal characteristics that are different from diagnostic quality 12-lead ECGs due to the limitations imposed by technology on the ambulatory recorders. The rapid pace of technological development for medical devices, particularly electrocardiography, has now enabled the recording of diagnostic quality 12-lead ECG waveforms for extended time periods. This capability allows Holter recording to become another source for diagnostic 12-lead ECG records on a par with other modalities such as resting ECG and exercise stress testing.
View Article and Find Full Text PDFA variety of chemical and biological nonlinear excitable media, including heart tissue, can support stable, self-organized waves of activity in a form of rotating single-arm spirals. In particular, heart tissue can support stationary and meandering spirals of electrical excitation, which have been shown to underlie different forms of cardiac arrhythmias. In contrast to single-arm spirals, stable multiarm spirals (multiple spiral waves that rotate in the same direction around a common organizing center) have not been demonstrated and studied yet in living excitable tissues.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2004
The goal of this modeling research is to provide mechanistic insight into the effect of altered membrane kinetics associated with 5-12 min of acute global ischemia on the upper limit of cardiac vulnerability (ULV) to electric shocks. We simulate electrical activity in a finite-element bidomain model of a 4-mm-thick slice through the canine ventricles that incorporates realistic geometry and fiber architecture. Global acute ischemia is represented by changes in membrane dynamics due to hyperkalemia, acidosis, and hypoxia.
View Article and Find Full Text PDFThe purpose of this paper is to investigate the relationship between cardiac tissue structure, applied electric field, and the transmembrane potential induced in the process of defibrillation. It outlines a general understanding of the structural mechanisms that contribute to the outcome of a defibrillation shock. Electric shocks defibrillate by changing the transmembrane potential throughout the myocardium.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2002
The bidomain equations are the most complete description of cardiac electrical activity. Their numerical solution is, however, computationally demanding, especially in three dimensions, because of the fine temporal and spatial sampling required. This paper methodically examines computational performance when solving the bidomain equations.
View Article and Find Full Text PDF