The replacement of agrochemicals by biomolecules is imperative to mitigate soil contamination and inactivation of its core microbiota. Within this context, this study aimed at the interaction between a biological control agent such as Trichoderma harzianum CCT 2160 (BF-Th) and the biosurfactants (BSs) derived from the native Brazilian yeast Starmerella bombicola UFMG-CM-Y6419. Thereafter, their potential in germination of Oryza sativa L.
View Article and Find Full Text PDFPullulan is an exopolysaccharide produced by Aureobasidium pullulans, with interesting characteristics which lead to its application in industries such as pharmaceuticals, cosmetics, food, and others. To reduce production costs for industrial applications, cheaper raw materials such as lignocellulosic biomass can be utilized as a carbon and nutrient source for the microbial process. In this study, a comprehensive and critical review was conducted, encompassing the pullulan production process and the key influential variables.
View Article and Find Full Text PDFLignocellulosic biomass (LCB) has remained a latent alternative resource to be the main substitute for oil and its derivatives in a biorefinery concept. However, its complex structure and the underdeveloped technologies for its large-scale processing keep it in a state of constant study trying to establish a consolidated process. In intensive processes, enzymes have been shown to be important molecules for the fractionation and conversion of LCB into biofuels and high-value-added molecules.
View Article and Find Full Text PDFβ-Glucans as emerging biopolymer are widely produced by microorganisms in fermentation processes using commercial sugars which make process non-economic. Lignocellulosic substances are inexpensive carbon sources, which could be exploited for sustainable production of β-glucans. In this study, a lignocellulosic material, namely sugarcane straw (SCS) was utilized for the production of extracellular β-glucan by Lasiodiplodia theobromae CCT3966.
View Article and Find Full Text PDFMolecular properties and biological functions of Pyrenaican SF-1 as a novel biological macromolecule extracted from a fungal isolate were studied. The isolate was identified as Daldinia pyrenaica on the basis of 5.8S rDNA sequencing.
View Article and Find Full Text PDFProduction of green chemicals and biofuels in biorefineries is the potential alternative for petrochemicals and gasoline in transitioning of petro-economy into bioeconomy. However, an efficient biomass pretreatment process must be considered for the successful deployment of biorefineries, mainly for use of lignocellulosic raw materials. However, biomass recalcitrance plays a key role in its saccharification to obtain considerable sugar which can be converted into ethanol or other biochemicals.
View Article and Find Full Text PDFLignocellulose biorefinery encompasses process engineering and biotechnology tools for the processing of lignocellulosic biomass for the manufacturing of bio-based products (such as biofuels, bio-chemicals, biomaterials). While, lignocellulose biorefinery offers clear value proposition, success at industrial level has not been vibrant for the commercial production of renewable chemicals and fuels. This is because of high capital and operating expenditures, irregularities in biomass supply chain, technical process immaturity, and scale up challenges.
View Article and Find Full Text PDFIn this study, sugarcane bagasse (SCB) pretreated with alkali assisted hydrodynamic cavitation (HC) was investigated for simultaneous saccharification and fermentation (SSF) process for bioethanol production in interconnected column reactors using immobilized Scheffersomyces stipitis NRRL-Y7124. Initially, HC was employed for the evaluation of the reagent used in alkaline pretreatment. Alkalis (NaOH, KOH, NaCO, Ca(OH)) and NaOH recycled black liquor (successive batches) were used and their pretreatment effectiveness was assessed considering the solid composition and its enzymatic digestibility.
View Article and Find Full Text PDFBioresour Technol
November 2017
Surfactants are amphiphilic molecules with large industrial applications produced currently by chemical routes mainly derived from oil industry. However, biotechnological process, aimed to develop new sustainable process configurations by using favorable microorganisms, already requires investigations in more details. Thus, we present a novel approach for biosurfactant production using the promising yeast Aureobasidium pullulans LB 83, in stirred tank reactor.
View Article and Find Full Text PDFHydrodynamic cavitation (HC), which is a highly destructive force, was employed for pretreatment of sugarcane bagasse (SCB). The efficacy of HC was studied using response surface methodology (RSM) with determining parameters varied: inlet pressure of 1-3bar, temperature of 40-70°C, and alkaline concentration of 0.1-0.
View Article and Find Full Text PDFBioconversion of hemicellulosic hydrolysate into ethanol plays a pivotal role in the overall success of biorefineries. For the efficient fermentative conversion of hemicellulosic hydrolysates into ethanol, the use of immobilized cells system could provide the enhanced ethanol productivities with significant time savings. Here, we investigated the effect of 2 important factors (e.
View Article and Find Full Text PDFSelection of the raw material and its efficient utilization are the critical factors in economization of second generation (2G) ethanol production. Fermentation of the released sugars into ethanol by a suitable ethanol producing microorganism using cheap media ingredients is the cornerstone of the overall process. This study evaluated the potential of rice bran extract (RBE) as a cheap nitrogen source for the production of 2G ethanol by Scheffersomyces (Pichia) stipitis NRRL Y-7124 using sugarcane bagasse (SB) hemicellulosic hydrolysate.
View Article and Find Full Text PDF