Publications by authors named "Felipe A Calil"

Mammaliicoccus sciuri, a commensal and pathogenic bacterium of significant clinical and veterinary relevance, expresses exfoliative toxin C (ExhC), a specific glutamyl endopeptidase belonging to the chymotrypsin family as the principal virulence factor. However, unlike most members of this family, ETs are inactive against a wide range of substrates and possess exquisite specificity for desmoglein-1 (Dsg1), a cadherin-like adhesion molecule that is crucial to maintain tissue integrity, thereby preventing the separation of skin cells and the entry of pathogens. ExhC is of clinical importance since in addition to causing exfoliation in pigs and mice, it induces necrosis in multiple mammalian cell lines, a property not observed for other ETs.

View Article and Find Full Text PDF
Article Synopsis
  • DNA-targeting agents like pradimicin-IRD show promise in cancer treatment, but their toxicity limits broader use.
  • The study utilized in silico modeling and transcriptomic analysis to examine DNA repair pathways activated in cancer cells after treatment with pradimicin-IRD, revealing its role as a DNA intercalating agent.
  • Key findings included reduced PCNA levels and specific gene expressions related to DNA repair, suggesting that pradimicin-IRD functions differently from other agents such as doxorubicin, indicating its potential for further development as an anticancer drug.
View Article and Find Full Text PDF

Eukaryotic DNA mismatch repair (MMR) depends on recruitment of the Mlh1-Pms1 endonuclease (human MLH1-PMS2) to mispaired DNA. Both Mlh1 and Pms1 contain a long unstructured linker that connects the N- and carboxyl-terminal domains. Here, we demonstrated the Mlh1 linker contains a conserved motif ( residues 391-415) required for MMR.

View Article and Find Full Text PDF

Eukaryotic DNA mismatch repair (MMR) initiates through mispair recognition by the MutS homologs Msh2-Msh6 and Msh2-Msh3 and subsequent recruitment of the MutL homologs Mlh1-Pms1 (human MLH1-PMS2). In bacteria, MutL is recruited by interactions with the connector domain of one MutS subunit and the ATPase and core domains of the other MutS subunit. Analysis of the S.

View Article and Find Full Text PDF

Eukaryotic DNA Mismatch Repair (MMR) involves redundant exonuclease 1 (Exo1)-dependent and Exo1-independent pathways, of which the Exo1-independent pathway(s) is not well understood. The exo1Δ440-702 mutation, which deletes the MutS Homolog 2 (Msh2) and MutL Homolog 1 (Mlh1) interacting peptides (SHIP and MIP boxes, respectively), eliminates the Exo1 MMR functions but is not lethal in combination with rad27Δ mutations. Analyzing the effect of different combinations of the exo1Δ440-702 mutation, a rad27Δ mutation and the pms1-A99V mutation, which inactivates an Exo1-independent MMR pathway, demonstrated that each of these mutations inactivates a different MMR pathway.

View Article and Find Full Text PDF

Neospora caninum causes heavy losses related to abortions in bovine cattle. This parasite developed a complex defense redox system, composed of enzymes as glutathione reductase (GR). Methylene blue (MB) impairs the activity of recombinant form of Plasmodium GR and inhibits the parasite proliferation in vivo and in vitro.

View Article and Find Full Text PDF

Cancer genome instability arises from diverse defects in DNA-repair machinery, which make cancer cells more susceptible to DNA targeting agents. The interrelation between DNA repair deficiency and the increased effect of DNA targeting agents highlights the double-strand break (DSB) repair, which comprises the homologous recombination (HR) and non-homologous end joining (NHEJ) pathways. The DNA targeting agents are classified into two major groups: non-covalent DNA binding agents and covalent DNA-reactive agents.

View Article and Find Full Text PDF

Schistosomiasis is a serious public health problem, prevalent in tropical and subtropical areas, especially in poor communities without access to safe drinking water and adequate sanitation. Transmission has been reported in 78 countries, and its control depends on a single drug, praziquantel, which has been used over the past 30 years. Our work is focused on exploiting target-based drug discovery strategies to develop new therapeutics to treat schistosomiasis.

View Article and Find Full Text PDF

Schistosomiasis ranks second only to malaria as the most common parasitic disease worldwide. 700 million people are at risk and 240 million are already infected. Praziquantel is the anthelmintic of choice but decreasing efficacy has already been documented.

View Article and Find Full Text PDF

Trematode worms of the genus Schistosoma are the causing agents of schistosomiasis, a parasitic disease responsible for a considerable economic and healthy burden worldwide. In the present work, the characterization of the enzyme dihydroorotate dehydrogenase from Schistosoma mansoni (SmDHODH) is presented. Our studies demonstrated that SmDHODH is a member of class 2 DHODHs and catalyzes the oxidation of dihydroorotate into orotate using quinone as an electron acceptor by employing a ping-pong mechanism of catalysis.

View Article and Find Full Text PDF

The flavoenzyme dihydroorotate dehydrogenase (DHODH) catalyzes the fourth reaction of the de novo pyrimidine biosynthetic pathway, which exerts vital functions in the cells, especially within DNA and RNA biosynthesis. Thus, this enzyme stands out as a new key molecular target for parasites causing Neglected Diseases (NDs). Focused on contributing to the development of new therapeutic alternatives for NDs, in this study, for the first time, a screening of 57 natural products for in vitro inhibition of Leishmania major DHODH (LmDHODH) was carried out, including cross validation against the human DHODH (HsDHODH).

View Article and Find Full Text PDF

Malaria remains one of the most lethal infectious diseases worldwide, and the most severe form is caused by Plasmodium falciparum. In recent decades, the major challenge to treatment of this disease has been the ability of the protozoan parasite to develop resistance to the drugs that are currently in use. Among P.

View Article and Find Full Text PDF

A new polycyclic antibiotic, pradimicin-IRD, was isolated from actinobacteria sp. IRD-009 recovered from soil of Brazilian rainforest undergoing restoration area. This molecule is the major compound produced in solid culture media.

View Article and Find Full Text PDF

The flavoenzyme dihydroorotate dehydrogenase catalyzes the stereoselective oxidation of (S)-dihydroorotate to orotate in the fourth of the six conserved enzymatic reactions involved in the de novo pyrimidine biosynthetic pathway. Inhibition of pyrimidine metabolism by selectively targeting DHODHs has been exploited in the development of new therapies against cancer, immunological disorders, bacterial and viral infections, and parasitic diseases. Through a chronological narrative, this review summarizes the efforts of the scientific community to achieve our current understanding of structural and biochemical properties of DHODHs.

View Article and Find Full Text PDF

Dihydroorotate dehydrogenase (DHODH) is an enzyme necessary for pyrimidine biosynthesis in protozoan parasites of the genus , the causative agents of malaria. We recently reported the identification of novel compounds derived from diversity-oriented synthesis with activity in multiple stages of the malaria parasite life cycle. Here, we report the optimization of a potent series of antimalarial inhibitors consisting of azetidine-2-carbonitriles, which we had previously shown to target DHODH in a biochemical assay.

View Article and Find Full Text PDF

The use of IMERs (Immobilized Enzyme Reactors) as a stationary phase coupled to high performance chromatographic systems is an interesting approach in the screening of new ligands. In addition, IMERs offer many advantages over techniques that employ enzymes in solution. The enzyme nucleoside triphosphate diphosphohydrolase (NTPDase-1) from acts as a pathogen infection facilitator, so it is a good target in the search for inhibitors.

View Article and Find Full Text PDF