Background: There is a clear need for assays that can predict the risk of metastatic prostate cancer following curative procedures. Importantly these assays must be analytically robust in order to provide quality data for important clinical decisions. DNA microarray based gene expression assays measure several analytes simultaneously and can present specific challenges to analytical validation.
View Article and Find Full Text PDFA more accurate understanding of the molecular mechanisms and signaling pathways underpinning human mesenchymal stem cell (MSC) plasticity and differentiation properties is pivotal for accomplishing solid and diligent translation of MSC-based experimental therapeutics and clinical trials to broad clinical practice. In addition, this knowledge enables selection of MSC subpopulations with increased differentiation potential and/or use of exogenous factors to boost this potential. Here, we report that CD105 (ENG) is a predictive biomarker of osteogenic potential in two types of MSCs: stem cells from human exfoliated deciduous teeth (SHED) and human adipose-derived stem cells (hASC).
View Article and Find Full Text PDFBiallelic loss-of-function mutations in the RNA-binding protein EIF4A3 cause Richieri-Costa-Pereira syndrome (RCPS), an autosomal recessive condition mainly characterized by craniofacial and limb malformations. However, the pathogenic cellular mechanisms responsible for this syndrome are entirely unknown. Here, we used two complementary approaches, patient-derived induced pluripotent stem cells (iPSCs) and conditional Eif4a3 mouse models, to demonstrate that defective neural crest cell (NCC) development explains RCPS craniofacial abnormalities.
View Article and Find Full Text PDFTreacher Collins Syndrome (TCS) is a rare congenital disease (1:50 000 live births) characterized by craniofacial defects, including hypoplasia of facial bones, cleft palate and palpebral fissures. Over 90% of the cases are due to mutations in the TCOF1 gene, which codifies the nucleolar protein Treacle. Here we report a novel TCS-like zebrafish model displaying features that fully recapitulate the spectrum of craniofacial abnormalities observed in patients.
View Article and Find Full Text PDFApert Syndrome (AS) is one of the most severe forms of craniosynostosis. It is caused by gain-of-function mutations in the receptor fibroblast growth factor receptor 2 (FGFR2), which leads to ligand-receptor promiscuity. Here, we aimed to better understand the behavior of mesenchymal stem cells (MSCs) and of fibroblastoid cells, cellular populations that are part of the suture complex, when stimulated with different fibroblast growth factors (FGFs).
View Article and Find Full Text PDFMesenchymal stem cell (MSC) osteogenic differentiation potential varies according to factors such as tissue source and cell population heterogeneity. Pre-selection of cell subpopulations harboring higher osteopotential is a promising strategy to achieve a thorough translation of MSC-based therapies to the clinic. Here, we searched for novel molecular markers predictive of osteopotential by comparing MSC populations from two sources harboring different osteogenic potentials.
View Article and Find Full Text PDFStem Cells Int
March 2015
Constraints for the application of MSCs for bone reconstruction include restricted self-renewal and limited cell amounts. iPSC technology presents advantages over MSCs, providing homogeneous cellular populations with prolonged self-renewal and higher plasticity. However, it is unknown if the osteogenic potential of iPSCs differs from that of MSCs and if it depends on the iPSCs originating cellular source.
View Article and Find Full Text PDFAdipose tissue-derived stem cells (ASCs) association to fat in autologous lipotransfer is promising for a more effective soft tissue reconstruction, and optimization of protocols to isolate ASCs from lipoaspirate fat is much needed. We demonstrated that an increase in adipocyte differentiation is dependent on the number of ASCs. In a sample of 10 donors, we found a higher concentration of nucleated cells in the lower abdomen compared to flank (P = 0.
View Article and Find Full Text PDFGain-of-function mutations in FGFR2 cause Apert syndrome (AS), a disease characterized by craniosynostosis and limb bone defects both due to abnormalities in bone differentiation and remodeling. Although the periosteum is an important cell source for bone remodeling, its role in craniosynostosis remains poorly characterized. We hypothesized that periosteal mesenchymal stem cells (MSCs) and fibroblasts from AS patients have abnormal cell phenotypes that contribute to the recurrent fusion of the coronal sutures.
View Article and Find Full Text PDF