Publications by authors named "Felidj N"

Article Synopsis
  • * SLRs offer advantages like narrower bandwidths and enhanced electric fields compared to LSPs, which are essential for creating efficient optical devices, with grazing diffracted orders playing a key role in their properties.
  • * The study utilizes both experimental and theoretical methods, including simulations of gold disk arrays, to show that SLR characteristics are closely linked to the efficiency of diffracted modes, emphasizing the importance of inter-particle spacing for optimizing performance in photonic applications.
View Article and Find Full Text PDF

Diabetes is a major global health concern, with millions of annual deaths. Monitoring glucose levels is vital for clinical management, and urine samples offer a noninvasive alternative to blood samples. Optical techniques for urine glucose sensing have gained notable traction due to their cost-effectiveness and portability.

View Article and Find Full Text PDF

When assembled in periodic arrangements, metallic nanostructures (NSs) support plasmonic surface lattice (SL) resonances resulting from long-range interactions these surface lattice resonances differ radically from localized surface plasmon (LSP). Similarly to the hybridization of LSP resonances, observed in short-range interactions, we demonstrate the possibility to generate a hybridization of surface lattice (SL) plasmon resonances, by the excitation of grazing order diffraction within the metasurface. This hybridization leads to the emergence of and modes.

View Article and Find Full Text PDF

Surface-enhanced Raman spectroscopy (SERS) is an emerging powerful vibrational technique offering unprecedented opportunities in biomedical science for the sensitive detection of biomarkers and the imaging and tracking of biological samples. Conventional SERS detection is based on the use of plasmonic substrates (e.g.

View Article and Find Full Text PDF

Correction for 'Extending nanoscale patterning with multipolar surface plasmon resonances' by Issam Kherbouche et al., Nanoscale, 2021, 13, 11051-11057, DOI: .

View Article and Find Full Text PDF

We study the interaction between one aptamer and its analyte (the MnSOD protein) by the combination of surface-enhanced Raman scattering and multivariate statistical analysis. We observe the aptamer structure and its evolution during the interaction under different experimental conditions (in air or in buffer). Through the spectral treatment by principal component analysis of a large set of SERS data, we were able to probe the aptamer conformations and orientations relative to the surface assuming that the in-plane nucleoside modes are selectively enhanced.

View Article and Find Full Text PDF

Plasmonic excitation of metallic nanoparticles can trigger chemical reactions at the nanoscale. Such optical effects can also be employed to selectively and locally graft photopolymer layers at the nanostructure surface, and, when combined with a surface functionalization agent, new pathways can be explored to modify the surface of a plasmonic nanoparticle. Among these approaches, diazonium salt chemistry is seen as an attractive strategy due to the high photoinduced reactivity of these salts.

View Article and Find Full Text PDF

Surface plasmon-mediated chemical reactions are of great interest for a variety of applications ranging from micro- and nanoscale device fabrication to chemical reactions of societal interest for hydrogen production or carbon reduction. In this work, a crosshair-like nanostructure is investigated due to its ability to induce local enhancement of the local electromagnetic field at three distinct wavelengths corresponding to three plasmon resonances. The structures are irradiated in the presence of a solution containing diazonium salts at wavelengths that match the resonance positions at 532 nm, 632.

View Article and Find Full Text PDF

The control of magnetic properties at the nanoscale is a current topic of intense research. It was shown that combining both magnetic and plasmonic nanoparticles (NPs) led to the improvement of their magneto-optical signal. In this context, common strategies consist of the design of bimetallic NPs.

View Article and Find Full Text PDF

Long-range interaction in regular metallic nanostructure arrays can provide the possibility to manipulate their optical properties, governed by the excitation of localized surface plasmon (LSP) resonances. When assembling the nanoparticles in an array, interactions between nanoparticles can result in a strong electromagnetic coupling for specific grating constants. Such a grating effect leads to narrow LSP peaks due to the emergence of new radiative orders in the plane of the substrate, and thus, an important improvement of the intensity of the local electric field.

View Article and Find Full Text PDF

Localized surface plasmon resonance (LSPR) excitation on the photochromic reaction of a diarylethene derivative (DE) was studied by surface enhanced Raman scattering (SERS). UV and visible light irradiations transform reversibly DE between open-form (OF) and closed-form (CF) isomers, respectively. A mixture of PMMA and DE (either OF or CF isomer) was spin-coated onto gold nanorods (GNRs) arrays, designed by electron beam lithography, with two localized surface plasmon resonances (LSPR) at distinct wavelengths, due to their anisotropy.

View Article and Find Full Text PDF

Rapid, selective and sensitive sensing of bacteria remains challenging. We report on a highly sensitive and reproducible surface-enhanced Raman spectroscopy (SERS)-based sensing approach for the detection of uropathogenic Escherichia coli (E. coli) bacteria in urine.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) tags are usually prepared by immobilizing Raman reporters on plasmonic nanoparticles (NPs) via thiol-based self-assembled monolayers. We describe here the first example of SERS tags obtained by combining gold NPs and aryl diazonium salts. This strategy results in robust Au-C covalent bonds between the Raman reporter and the NPs, thus ensuring a high stability of the nanohybrid interface.

View Article and Find Full Text PDF

The surface enhanced Raman scattering (SERS) efficiency of gold nanocylinders deposited on gold thin film is studied. Exploiting the specific plasmonic properties of such substrates, we determine the influence of the nanocylinder diameter and the film thickness on the SERS signal at three different excitation wavelengths (532, 638 and 785 nm). We demonstrate that the highest signal is reached for the highest diameter of 250 nm due to coupling between the nanocylinders and for the lowest thickness (20 nm) as the excited plasmon is created at the interface between the gold and glass substrate.

View Article and Find Full Text PDF

The design of surface-enhanced Raman spectroscopy (SERS) platforms based on the coupling between plasmonic nanostructures and stimuli-responsive polymers has attracted considerable interest over the past decades for the detection of a wide range of analytes, including pollutants and biological molecules. However, the SERS intensity of analytes trapped inside smart hybrid nanoplatforms is subject to important fluctuations because of the spatial and spectral variation of the plasmonic near-field enhancement (i.e.

View Article and Find Full Text PDF

The control of quantum dot (QD) photoluminescence (PL) is a challenge for many applications. It is well known that plasmonic resonances can enhance this PL. In this work, we couple QDs with silver nanoparticles and immerse the system in a photochromic organic material.

View Article and Find Full Text PDF

Active plasmonics is a key focus for the development of advanced plasmonic applications. By selectively exciting the localized surface plasmon resonance sustained by the short or the long axis of silver nanorods, we demonstrate a polarization-dependent strong coupling between the plasmonic resonance and the excited state of photochromic molecules. By varying the width and the length of the nanorods independently, a clear Rabi splitting appears in the dispersion curves of both resonators.

View Article and Find Full Text PDF

Plasmon-driven surface functionalization of nanoparticles is receiving increasing attention as it allows locally tailored chemical reactivity to be generated on the nanoparticle surface. The extension to surface multi-functionalization still represents a major breakthrough in chemistry. We address this issue by triggering regiospecific surface double-functionalization under plasmon excitation, using diazonium salts as surface functionalization agents.

View Article and Find Full Text PDF

Site-selective surface functionalization of anisotropic gold nanoparticles represents a major breakthrough for fully exploiting nanoparticle anisotropy. In this paper, we explore an original strategy for the regioselective functionalization of lithographically designed gold nanorods (AuNRs), based a combination of photo-induced plasmon excitation and aryl diazonium salt chemistry.

View Article and Find Full Text PDF

Hydrophobic Au nanocrystal assemblies (both ordered and amorphous) were dispersed in aqueous solution via the assistance of lipid vesicles. The intertwine between vesicles and Au assemblies was made possible through a careful selection of the length of alkyl chains on Au nanocrystals. Extinction spectra of Au assemblies showed two peaks that were assigned to a scattering mode that red-shifted with increasing the assembly size and an absorption mode associated with localized surface plasmon that was independent of their size.

View Article and Find Full Text PDF
Article Synopsis
  • The study demonstrates that using oriented arrays of smectic A defects, termed smectic oily streaks, can effectively orient gold nanorods (GNRs) across a range of sizes and ligands.
  • It was found that increasing the density of small GNRs led to the formation of oriented end-to-end chains, revealing their alignment predominantly along the oily streaks.
  • The research also highlights the electromagnetic coupling of the GNRs, showing that their orientation influences their luminescence and interaction, which is further affected by van der Waals forces and steric repulsion between them.
View Article and Find Full Text PDF

The controlled assembly of anisotropic plasmonic nanoparticles (NPs) into highly SERS-active substrates remains particularly challenging for the production of long-term stable NP assemblies in suspension. In this work, we report a simple and efficient strategy to assemble gold nanorods (AuNRs) into dimers. The pH-dependent assembly was triggered using the bifunctional molecular linker BPE (1,2-bis(4-pyridyl)ethylene) and quenched with silver nitrate.

View Article and Find Full Text PDF

Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes.

View Article and Find Full Text PDF

A smart and highly SERS-active plasmonic platform was designed by coupling regular arrays of nanotriangles to colloidal gold nanorods via a thermoresponsive polymer spacer (poly(N-isopropylacrylamide), PNIPAM). The substrates were prepared by combining a top-down and a bottom-up approach based on nanosphere lithography, surface-initiated controlled radical polymerization, and colloidal assembly. This multistep strategy provided regular hexagonal arrays of nanotriangles functionalized by polymer brushes and colloidal gold nanorods, confined exclusively on the nanotriangle surface.

View Article and Find Full Text PDF