Publications by authors named "Felicity Muth"

While most models of decision-making assume that individuals assign options absolute values, animals often assess options comparatively, violating principles of economic rationality. Such 'irrational' preferences are especially common when two rewards vary along multiple dimensions of quality and a third, 'decoy' option is available. Bumblebees are models of decision-making, yet whether they are subject to decoy effects is unknown.

View Article and Find Full Text PDF

Wild bees pollinate crops and wildflowers where they are frequently exposed to pesticides. Neonicotinoids are the most commonly used insecticide globally, but restrictions on their use and rising pest resistance have increased the demand for alternative pesticides. Flupyradifurone is a novel insecticide that has been licenced globally for use on bee-visited crops.

View Article and Find Full Text PDF

The cognitive ecology of pollination is most often studied using simple rewards, yet flowers often contain multiple types of chemically complex rewards, each varying along multiple dimensions of quality. In this review we highlight ways in which reward complexity can impact pollinator cognition, demonstrating the need to consider ecologically realistic rewards to fully understand plant-pollinator interactions. We show that pollinators' reward preferences can be modulated by reward chemistry and the collection of multiple reward types.

View Article and Find Full Text PDF

Agricultural intensification has been identified as one of the key causes of global insect biodiversity losses. These losses have been further linked to the widespread use of agrochemicals associated with modern agricultural practices. Many of these chemicals are known to have negative sublethal effects on commercial pollinators, such as managed honeybees and bumblebees, but less is known about the impacts on wild bees.

View Article and Find Full Text PDF

Over decades, pesticide regulations have cycled between approval and implementation, followed by the discovery of negative effects on nontarget organisms that result in new regulations, pesticides, and harmful effects. This relentless pattern undermines the capacity to protect the environment from pesticide hazards and frustrates end users that need pest management tools. Wild pollinating insects are in decline, and managed pollinators such as honey bees are experiencing excessive losses, which threatens sustainable food security and ecosystem function.

View Article and Find Full Text PDF

A new study shows that bumblebees learn socially, and this resulted in a novel behavior becoming dominant across a group. These findings highlight the opportunity going forward to use social insects to address how simple cognitive mechanisms can underpin the development of complex behavioral phenomena.

View Article and Find Full Text PDF

Judgement bias, or 'optimism' and 'pessimism', has been demonstrated across many taxa, yet the cognitive mechanisms underlying this behaviour remain unclear. In an optimism paradigm, animals are trained to an association, and, if given a positive experience, behave more favourably towards 'ambiguous' stimuli. We tested whether this effect could be explained by changes to stimulus response gradients by giving bees a task where their response was tested across a wider gradient of stimuli than typically tested.

View Article and Find Full Text PDF

Intensive agriculture is reliant on pesticides to control crop pests, but these chemicals can have negative environmental consequences. This has resulted in repeated calls for pesticide risk assessments to be modified to better protect ecosystem services such as pollination. However, the pesticide licensing process is complex, and consequently there is often confusion between risk assessments where the environmental impact of pesticide use is considered, and risk management where licensing decisions are made.

View Article and Find Full Text PDF

Globally documented wild bee declines threaten sustainable food production and natural ecosystem functioning. Urban environments are often florally abundant, and consequently can contain high levels of pollinator diversity compared with agricultural environments. This has led to the suggestion that urban environments are an increasingly important habitat for pollinators.

View Article and Find Full Text PDF

Nectar chemistry can influence the behavior of pollinators in ways that affect pollen transfer, yet basic questions about how nectar chemical diversity impacts plant-pollinator relationships remain unexplored. For example, plants' capacity to produce neurotransmitters and endocrine disruptors may offer a means to manipulate pollinator behavior. We surveyed 15 plant species and discovered that two insect neurotransmitters, octopamine and tyramine, were widely distributed in floral nectar.

View Article and Find Full Text PDF

Bees are vital pollinators of crops and wildflowers and as such, wild bee declines threaten food security and functioning ecosystems. One driver of bee declines is the use of systemic insecticides, such as commonly used neonicotinoids. However, rising pest resistance to neonicotinoids, and restrictions on their use in the EU, has increased the demand for replacement insecticides to control crop pests.

View Article and Find Full Text PDF

While classic models of animal decision-making assume that individuals assess the absolute value of options, decades of research have shown that rewards are often evaluated relative to recent experience, creating incentive contrast effects. Contrast effects are often assumed to be purely sensory, yet consumer and experimental psychology tell us that label-based expectations can affect value perception in humans and rodents. However, this has rarely been tested in non-model systems.

View Article and Find Full Text PDF

Neonicotinoid insecticides can have sub-lethal effects on bees which has led to calls from conservationists for a global ban. In contrast, agrochemical companies argue that neonicotinoids do not harm honeybees at field-realistic levels. However, the focus on honeybees neglects the potential impact on other bee species.

View Article and Find Full Text PDF

Bumblebees are important pollinators of agricultural crops and wildflowers, but many species are in decline. Neonicotinoid insecticides are the most commonly used insecticide globally and can have negative sublethal effects on bumblebee colony growth and reproduction. Individual bumblebees can visit hundreds to thousands of flowers a day to forage for their colony.

View Article and Find Full Text PDF

Species' cognitive traits are shaped by their ecology, and even within a species, cognition can reflect the behavioural requirements of individuals with different roles. Social insects have a number of discrete roles (castes) within a colony and thus offer a useful system to determine how ecological requirements shape cognition. Bumblebee queens are a critical point in the lifecycle of their colony, since its future success is reliant on a single individual's ability to learn about floral stimuli while finding a suitable nest site; thus, one might expect particularly adept learning capabilities at this stage.

View Article and Find Full Text PDF

Animals develop food preferences based on taste, nutritional quality and to avoid environmental toxins. Yet, measuring preferences in an experimental setting can be challenging since ecologically realistic assays can be time consuming, while simplified assays may not capture natural sampling behavior. Field realism is a particular challenge when studying behavioral responses to environmental toxins in lab-based assays, given that toxins can themselves impact sampling behavior, masking our ability to detect preferences.

View Article and Find Full Text PDF

Systemic insecticides, such as neonicotinoids, are a major contributor towards beneficial insect declines. This has led to bans and restrictions on neonicotinoid use globally, most noticeably in the European Union, where four commonly used neonicotinoids (imidacloprid, thiamethoxam, clothianidin and thiacloprid) are banned from outside agricultural use. While this might seem like a victory for conservation, restrictions on neonicotinoid use will only benefit insect populations if newly emerging insecticides do not have similar negative impacts on beneficial insects.

View Article and Find Full Text PDF

Neonicotinoid pesticides can have a multitude of negative sublethal effects on bees. Understanding their impact on wild populations requires accurately estimating the dosages bees encounter under natural conditions. This is complicated by the possibility that bees might influence their own exposure: two recent studies found that bumblebees () preferentially consumed neonicotinoid-contaminated nectar, even though these chemicals are thought to be tasteless and odourless.

View Article and Find Full Text PDF

Neonicotinoid pesticides can impair bees' ability to learn and remember information about flowers, critical for effective foraging. Although these effects on cognition may contribute to broader effects on health and performance, to date they have largely been assayed in simplified protocols that consider learning in a single sensory modality, usually olfaction. Given that real flowers display a variety of potentially useful signals, we assessed the effects of acute neonicotinoid exposure on multimodal learning in free-flying bumblebees.

View Article and Find Full Text PDF

Plants often compete in a marketplace that involves the exchange of floral rewards for pollination service [1]. This marketplace is frequently viewed as revolving around a single currency, typically nectar. While this focus has established pollinators such as bees as classic models in foraging ecology, in reality many plants provide both pollen and nectar, which vary in composition within and across species [2].

View Article and Find Full Text PDF

Pollen plays a dual role as both a gametophyte and a nutritional reward for pollinators. Although pollen chemistry varies across plant species, its functional significance in pollination has remained obscure, in part because little is known about how floral visitors assess it. Bees rely on pollen for protein, but whether foragers evaluate its chemistry is unclear, as it is primarily consumed by larvae.

View Article and Find Full Text PDF

Bees are model organisms for the study of learning and memory, yet nearly all such research to date has used a single reward, nectar. Many bees collect both nectar (carbohydrates) and pollen (protein) on a single foraging bout, sometimes from different plant species. We tested whether individual bumblebees could learn colour associations with nectar and pollen rewards simultaneously in a foraging scenario where one floral type offered only nectar and the other only pollen.

View Article and Find Full Text PDF

Some bird species are selective in the materials they choose for nest building, preferring, for example, materials of one colour to others. However, in many cases the cause of these preferences is not clear. One of those species is the zebra finch, which exhibits strong preferences for particular colours of nest material.

View Article and Find Full Text PDF