Acquired drug resistance is the major cause for disease recurrence in cancer patients, and this is particularly true for patients with metastatic melanoma that carry a BRAF mutation. To address this problem, we investigated cyclic membrane-active peptides as an alternative therapeutic modality to kill drug-tolerant and resistant melanoma cells to avoid acquired drug resistance. We selected two stable cyclic peptides (cTI and cGm), previously shown to have anti-melanoma properties, and compared them with dabrafenib, a drug used to treat cancer patients with the BRAF mutation.
View Article and Find Full Text PDFTachyplesin-I (TI) is a host defense peptide from the horseshoe crab that has outstanding potential as an anticancer therapeutic lead. Backbone cyclized TI (cTI) has similar anticancer properties to TI but has higher stability and lower hemolytic activity. We designed and synthesized cTI analogues to further improve anticancer potential and investigated structure-activity relationships based on peptide-membrane interactions, cellular uptake, and anticancer activity.
View Article and Find Full Text PDFTachyplesin I, II and III are host defense peptides from horseshoe crab species with antimicrobial and anticancer activities. They have an amphipathic β-hairpin structure, are highly positively-charged and differ by only one or two amino acid residues. In this study, we compared the structure and activity of the three tachyplesin peptides alongside their backbone cyclized analogues.
View Article and Find Full Text PDFOmega-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) provide significant health benefits and this has led to an increased consumption as dietary supplements. Omega-3 fatty acids EPA and DHA are found in animals, transgenic plants, fungi and many microorganisms but are typically extracted from fatty fish, putting additional pressures on global fish stocks. As primary producers, many marine microalgae are rich in EPA (C20:5) and DHA (C22:6) and present a promising source of omega-3 fatty acids.
View Article and Find Full Text PDF