Publications by authors named "Felicitas Bosen"

Correction to: NPG Asia Materials (2018) https://doi.org/10.1038/s41427-018-0014-9 published online on 16 April 2018.

View Article and Find Full Text PDF

Several mutant mice have been generated to model connexin (Cx)-linked skin diseases; however, the role of connexins in skin maintenance and during wound healing remains to be fully elucidated. Here we generated a novel, viable, and fertile mouse (Cx26) with the keratitis-ichthyosis-deafness mutant (Cx26S17F) driven by the cytokeratin 14 promoter. This mutant mouse mirrors several Cx26-linked human skin pathologies suggesting that the etiology of Cx26-linked skin disease indeed stems from epidermal expression of the Cx26 mutant.

View Article and Find Full Text PDF

Gap junctional intercellular communication (GJIC) has been suggested to be involved in early embryonic development but the actual functional role remained elusive. Connexin (Cx) 43 and Cx45 are co-expressed in embryonic stem (ES) cells, form gap junctions and are considered to exhibit adhesive function and/or to contribute to the establishment of defined communication compartments. Here, we describe the generation of Cx43/Cx45-double deficient mouse ES cells to achieve almost complete breakdown of GJIC.

View Article and Find Full Text PDF

The keratitis-ichthyosis-deafness (KID) syndrome is characterized by corneal, skin, and hearing abnormalities. KID has been linked to heterozygous dominant missense mutations in the GJB2 and GJB6 genes, encoding connexin26 and 30, respectively. In vitro evidence indicates that KID mutations lead to hyperactive (open) hemichannels, which in some cases is accompanied by abnormal function of gap junction channels.

View Article and Find Full Text PDF

The keratitis-ichthyosis-deafness (KID) syndrome is caused by mutations in the gap junctional channel protein connexin 26 (Cx26), among them the mutation Cx26S17F. Heterozygous Cx26S17F mice resemble the human KID syndrome, i.e.

View Article and Find Full Text PDF

Background: Sudden infant death syndrome (SIDS) describes the sudden, unexplained death of a baby during its first year of age and is the third leading cause of infant mortality. It is assumed that ≤20% of all SIDS cases are because of cardiac arrhythmias resulting from mutations in ion channel proteins. Besides ion channels also cardiac gap junction channels are important for proper conduction of cardiac electric activation.

View Article and Find Full Text PDF

Distinct mutations in the gap junction protein connexin30 (Cx30) can cause the ectodermal dysplasia Clouston syndrome in humans. We have generated a new mouse line expressing the Clouston syndrome mutation Cx30A88V under the control of the endogenous Cx30 promoter. Our results show that the mutated Cx30A88V protein is incorporated in gap junctional plaques of the epidermis.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most common type of cardiac arrhythmia and a major cause of stroke. In the mammalian heart the gap junction proteins connexin40 (Cx40) and connexin43 (Cx43) are strongly expressed in the atrial myocardium mediating effective propagation of electrical impulses. Different heterozygous mutations in the coding region for Cx40 were identified in patients with AF.

View Article and Find Full Text PDF

Mutations in the GJB2 gene coding for connexin26 (Cx26) can cause a variety of deafness and hereditary hyperproliferative skin disorders in humans. In this study, we investigated the Cx26S17F mutation in mice, which had been identified to cause the keratitis-ichthyosis-deafness (KID) syndrome in humans. The KID syndrome is characterized by keratitis and chronic progressive corneal neovascularization, skin hyperplasia, sensorineural hearing loss and increased carcinogenic potential.

View Article and Find Full Text PDF