Aurora kinases and protein kinase C (PKC) have been shown to be involved in different aspects of cancer progression. To date, no dual Aurora/PKC inhibitor with clinical efficacy and low toxicity is available. Here, we report the identification of compound as a potent small molecule capable of selectively inhibiting Aurora A kinase and PKC isoforms α, β1, β2 and θ.
View Article and Find Full Text PDFNew 6, -diaryl-1,3,5-triazine-2,4-diamines were designed using the 3D-QSAR model developed earlier. These compounds were prepared and their antiproliferative activity was evaluated against three breast cancer cell lines (MDA-MB231, SKBR-3 and MCF-7) and non-cancerous MCF-10A epithelial breast cells. The synthesized compounds demonstrated selective antiproliferative activity against triple negative MDA-MB231 breast cancer cells.
View Article and Find Full Text PDFA library of 126 compounds with a 6, -diaryl-1,3,5-triazine-2,4-diamine scaffold was prepared using a one-pot, microwave-assisted method from readily available cyanoguanidine, aromatic aldehydes and arylamines. The three-component condensation of these reagents in the presence of hydrochloric acid was followed by the treatment with a base, which promoted a rearrangement of the dihydrotriazine ring and its dehydrogenative aromatization. The antiproliferative properties of the prepared compounds were evaluated using three breast cancer cell lines.
View Article and Find Full Text PDFA new, effective one-pot synthesis of the 6, N-diaryl-1,3,5-triazine-2,4-diamines under microwave irradiation was developed. The method involved an initial three-component condensation of cyanoguanidine, aromatic aldehydes, and arylamines in the presence of hydrochloric acid. Without isolation, the resulting 1,6-diaryl-1,6-dihydro-1,3,5-triazine-2,4-diamines were treated with a base to initiate Dimroth rearrangement and spontaneous dehydrogenative aromatization, affording the desired compounds.
View Article and Find Full Text PDFPurine isosteres present excellent opportunities in drug design and development. Using isosteres of natural purines as scaffolds for the construction of new therapeutic agents has been a valid strategy of medicinal chemistry. Inspired by the similarity to isoguanine, we attempted to develop a practical method for the preparation of 5-aza-isoguanines.
View Article and Find Full Text PDFTwo complementary pathways for the preparation of -substituted 3-(5-amino-1-1,2,4-triazol-3-yl)propanamides (5) were proposed and successfully realized in the synthesis of 20 representative examples. These methods use the same types of starting materials . succinic anhydride, aminoguanidine hydrochloride, and a variety of amines.
View Article and Find Full Text PDFA highly selective, one-pot, three-component synthesis of novel 2-alkyl-substituted 4-aminoimidazo[1,2-][1,3,5]triazines has been developed. The scope of the method was explored in two dimensions, varying the structures of trialkyl orthoesters and 2-aminoimidazoles in their reactions with cyanamide. Conveniently performed under microwave irradiation, this method was also proved to be efficient under conventional heating.
View Article and Find Full Text PDFPurines can be considered as the most ubiquitous and functional N-heterocyclic compounds in nature. Structural modifications of natural purines, particularly using isosteric ring systems, have been in the focus of many drug discovery programs. Fusion of 1,3,5-triazine ring with pyrrole, pyrazole, imidazole, 1,2,3-triazole or 1,2,4-triazole results in seven bicyclic heterocyclic systems isosteric to purine.
View Article and Find Full Text PDF