This paper describes the development and initial results from a secondary ion mass spectrometer coupled with microscope mode detection. Stigmatic ion microscope imaging enables us to decouple the primary ion (PI) beam focus from spatial resolution and is a promising route to attaining higher throughput for mass spectrometry imaging (MSI). Using a commercial C PI beam source, we can defocus the PI beam to give uniform intensity across a 2.
View Article and Find Full Text PDFMatrix assisted laser desorption ionisation mass spectrometry (MALDI-MS) at atmospheric pressure (AP) is, with a few notable exceptions, overshadowed by its vacuum based forms and AP transmission mode (TM) MALDI-MS lacks the up-take its potential benefits might suggest. The reasons for this are not fully understood and it is clear further development is required to realise the flexibility and power of this ionisation method and geometry. Here we report the build of a new AP-TM-MALDI-MSI ion source with plasma ionisation enhancement.
View Article and Find Full Text PDFBiomedical devices are complex products requiring numerous assembly steps along the industrial process chain, which can carry the potential of surface contamination. Cleanliness has to be analytically assessed with respect to ensuring safety and efficacy. Although several analytical techniques are routinely employed for such evaluation, a reliable analysis chain that guarantees metrological traceability and quantification capability is desirable.
View Article and Find Full Text PDFWe describe the development of a reference biosensor surface, based upon a binary mixture of oligo-ethylene glycol thiols, one of which has biotin at the terminus, adsorbed onto gold as self-assembled monolayers (SAMs). These surfaces were analyzed in detail by X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS) to establish the relationship between the thiol solution composition and the surface composition and structure. We report the use of argon cluster primary ions for the analysis of PEG-thiols, establishing that the different thiols are intimately mixed and that SIMS may be used to measure surface composition of thiol SAMs on gold with a detection limit better than 1% fractional coverage.
View Article and Find Full Text PDFA VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study for desorption electrospray ionization mass spectrometry (DESI MS) measurements has been conducted with the involvement of 20 laboratories from 10 countries. Participants were provided with an analytical protocol and two reference samples: a thin layer of Rhodamine B and double-sided adhesive tape, each on separate glass slides. The studies comprised acquisition of positive ion mass spectra in predetermined m/z ranges.
View Article and Find Full Text PDFTwo ambient ionisation techniques, desorption electrospray ionisation (DESI) and plasma assisted desorption ionisation (PADI), have been used to analyse personal care products (PCPs) on fixed fibroblast cell surfaces. The similarities and differences between the two techniques for this type of analysis have been explored in various ways. Here, we show the results of DESI and PADI analysis of individual PCP ingredients as well as the analysis of these as complex creams on model skin surfaces, with minimal sample preparation.
View Article and Find Full Text PDFIn recent years, there has been an increase in the use of time-of-flight secondary ion mass spectrometry (TOF-SIMS) for characterizing material surfaces. A great advantage of SIMS is that the analysis is direct and has excellent spatial resolution approaching a few hundred nanometers. However, the lack of the usual separation methods in mass spectrometry such as chromatography or ion mobility combined with the complexity of the heavily fragmented ions in the spectra means that the interpretation of multicomponent spectra in SIMS is very challenging indeed.
View Article and Find Full Text PDFMeasurements are described to evaluate the constitution of secondary ion mass spectra for both monatomic and cluster primary ions. Previous work shows that spectra for different primary ions may be accurately described as the product of three material-dependent component spectra, two being raised to increasing powers as the cluster size increases. That work was for an organic material and, here, this is extended to (SiO(2))(t)OH(-) clusters from silicon oxide sputtered by 25 keV Bi(n)(+) cluster primary ions for n = 1, 3, and 5 and 1 < or = t < or = 15.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2009
An analysis is made of the characteristics of monatomic primary ion sources to generate G-SIMS (gentle SIMS) spectra. In previous studies, this is resolved into the parameter beta that describes the relative intensities of ions in the series C(n)H(n+2-i) as i changes. For this, data from polystyrene are most extensive.
View Article and Find Full Text PDFThe use of cluster ion beam sputtering for depth profiling organic materials is of growing technological importance and is a very active area of research. At the 44th IUVSTA Workshop on "Sputtering and Ion Emission by Cluster Ion Beams", recent results were presented of a cluster ion beam depth profile of a thin organic molecular layer on a silicon wafer substrate. Those data showed that the intensity of molecular secondary ions is observed to increase at the interface and this was explained in terms of the higher stopping power in the substrate and a consequently higher sputtering yield and even higher secondary ion molecular sputtering yield.
View Article and Find Full Text PDFG-SIMS (gentle-SIMS) is a powerful method that considerably simplifies complex static secondary ion mass spectrometry (SSIMS) analysis of organics at surfaces. G-SIMS uses two primary ion beams that generate high and low fragmentation conditions at the surface. This allows an extrapolation to equivalent experimental conditions with very low fragmentation.
View Article and Find Full Text PDFAlternating layers of two different organic materials, Irganox1010 and Irganox3114, have been created using vapor deposition. The layers of Irganox3114 were very thin ( approximately 2.5 nm) in comparison to the layers of Irganox1010 ( approximately 55 or approximately 90 nm) to create an organic equivalent of the inorganic 'delta-layers' commonly employed as reference materials in dynamic secondary ion mass spectrometry.
View Article and Find Full Text PDF