Publications by authors named "Felicia D Goodrum"

Virology has made enormous advances in the last 50 years but has never faced such scrutiny as it does today. Herein, we outline some of the major advances made in virology during this period, particularly in light of the COVID-19 pandemic, and suggest some areas that may be of research importance in the next 50 years. We focus on several linked themes: cataloging the genomic and phenotypic diversity of the virosphere; understanding disease emergence; future directions in viral disease therapies, vaccines, and interventions; host-virus interactions; the role of viruses in chronic diseases; and viruses as tools for cell biology.

View Article and Find Full Text PDF
Article Synopsis
  • HCMV genes play opposing roles in managing latency and reactivation in CD34 human progenitor cells (HPCs), as shown in an RNA sequencing study using the THP-1 cell line.
  • Loss of certain genes increases viral gene expression and cell differentiation supporting HCMV, while their presence reduces viral gene expression during latency establishment.
  • Transcriptional analysis indicates that host transcription factors may work with specific HCMV genes to regulate viral expression and potentially influence hematopoietic differentiation.
View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) requires inactivation of AKT to efficiently replicate, yet how AKT is shut off during HCMV infection has remained unclear. We show that UL38, an HCMV protein that activates mTORC1, is necessary and sufficient to destabilize insulin receptor substrate 1 (IRS1), a model insulin receptor substrate (IRS) protein. Degradation of IRS proteins in settings of excessive mTORC1 activity is an important mechanism for insulin resistance.

View Article and Find Full Text PDF

The interface between humans and wildlife is changing and, with it, the potential for pathogen introduction into humans has increased. Avian influenza is a prominent example, with an ongoing outbreak showing the unprecedented expansion of both geographic and host ranges. Research in the field is essential to understand this and other zoonotic threats.

View Article and Find Full Text PDF
Article Synopsis
  • The PI3K/AKT pathway is vital for cell survival and protein synthesis, but some viruses, including HCMV, can manipulate it to their advantage, leading to AKT's inactivation during infection.
  • HCMV requires FoxO transcription factors to enter the cell nucleus, which is hindered by active AKT; the study showed that viral gene expression is necessary to keep AKT from responding to growth signals like serum.
  • The viral protein UL38 plays a key role in reducing AKT activity by promoting the degradation of IRS1, a protein essential for AKT activation, and this process can be inhibited by the mTORC1 inhibitor rapamycin.
View Article and Find Full Text PDF

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer.

View Article and Find Full Text PDF

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer.

View Article and Find Full Text PDF

When humans experience a new, devastating viral infection such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), significant challenges arise. How should individuals as well as societies respond to the situation? One of the primary questions concerns the origin of the SARS-CoV-2 virus that infected and was transmitted efficiently among humans, resulting in a pandemic. At first glance, the question appears straightforward to answer.

View Article and Find Full Text PDF
Article Synopsis
  • - The protein kinase Akt plays a crucial role in various cellular processes, and its inhibition can trigger herpesviruses to reactivate from latency, indicating that decreased Akt activity might encourage lytic replication.
  • - During human cytomegalovirus (HCMV) infection, Akt is found in an inactive state within fibroblasts, linked to specific changes in phosphorylation patterns and the localization of the substrate FoxO3a, while mTORC1 activation further contributes to Akt inactivation.
  • - Unexpectedly, maintaining active Akt (myr-Akt) reduces viral replication, revealing that the inactivation of Akt is necessary for efficient HCMV replication, primarily through the involvement of FoxO3a.
View Article and Find Full Text PDF

Viruses have evolved diverse strategies to manipulate cellular signaling pathways in order to promote infection and/or persistence. Human cytomegalovirus (HCMV) possesses a number of unique properties that allow the virus to alter cellular events required for infection of a diverse array of host cell types and long-term persistence. Of specific importance is infection of bone marrow derived and myeloid lineage cells, such as peripheral blood monocytes and CD34 hematopoietic progenitor cells (HPCs) because of their essential role in dissemination of the virus and for the establishment of latency.

View Article and Find Full Text PDF

In human cytomegalovirus (HCMV)-seropositive patients, CD34 hematopoietic progenitor cells (HPCs) provide an important source of latent virus that reactivates following cellular differentiation into tissue macrophages. Multiple groups have used primary CD34 HPCs to investigate mechanisms of viral latency. However, analyses of mechanisms of HCMV latency have been hampered by the genetic variability of CD34 HPCs from different donors, availability of cells, and low frequency of reactivation.

View Article and Find Full Text PDF

Regulation of epidermal growth factor (EGF) receptor (EGFR) signaling is critical for the replication of human cytomegalovirus (HCMV) as well as latency and reactivation in CD34 hematopoietic progenitor cells. HCMV microRNAs (miRNAs) provide a means to modulate the signaling activated by EGF through targeting components of the EGFR signaling pathways. Here, we demonstrate that HCMV miR-US5-2 directly downregulates the critical EGFR adaptor protein GAB1 that mediates activation and sustained signaling through the phosphatidylinositol 3-kinase (PI3K) and MEK/extracellular signal-regulated kinase (ERK) pathways and cellular proliferation in response to EGF.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) latency, the means by which the virus persists indefinitely in an infected individual, is a major frontier of current research efforts in the field. Towards developing a comprehensive understanding of HCMV latency and its reactivation from latency, viral determinants of latency and reactivation and their host interactions that govern the latent state and reactivation from latency have been identified. The polycistronic locus encodes determinants of both latency and reactivation.

View Article and Find Full Text PDF

Human cytomegalovirus (HCMV) infection is a serious complication in hematopoietic stem cell transplant (HSCT) recipients due to virus-induced myelosuppression and impairment of stem cell engraftment. Despite the clear clinical link between myelosuppression and HCMV infection, little is known about the mechanism(s) by which the virus inhibits normal hematopoiesis because of the strict species specificity and the lack of surrogate animal models. In this study, we developed a novel humanized mouse model system that recapitulates the HCMV-mediated engraftment failure after hematopoietic cell transplantation.

View Article and Find Full Text PDF

Purpose Of Review: Herpesvirus latency has been viewed as a binary state where replication is either on or off. During latency, gene expression is thought to be restricted to non-coding RNAs or very few proteins so that the virus avoids detection by the immune system. However, a number of recent studies across herpesvirus families call into question the existence of a binary switch for latency, and suggest that latency is far more dynamic than originally presumed.

View Article and Find Full Text PDF

Human cytomegalovirus (CMV) is one of the largest viruses known to cause human diseases. Chronic CMV infection, as defined by anti-CMV IgG serology, increases with age and is highly prevalent in older adults. It has complex biology with significant immunologic and health consequences.

View Article and Find Full Text PDF

The establishment of human cytomegalovirus (HCMV) latency and persistence relies on the successful infection of hematopoietic cells, which serve as sites of viral persistence and contribute to viral spread. Here, using blocking antibodies and pharmacological inhibitors, we document that HCMV activation of the epidermal growth factor receptor (EGFR) and downstream phosphatidylinositol 3-kinase (PI3K) mediates viral entry into CD34 human progenitor cells (HPCs), resulting in distinct cellular trafficking and nuclear translocation of the virus compared to that in other immune cells, such as we have documented in monocytes. We argue that the EGFR allows HCMV to regulate the cellular functions of these replication-restricted cells via its signaling activity following viral binding.

View Article and Find Full Text PDF

Unlabelled: We report that UL133-UL138 (UL133/8), a transcriptional unit within the ULb' region (ULb') of the human cytomegalovirus (HCMV) genome, and UL97, a viral protein kinase encoded by HCMV, play epistatic roles in facilitating progression of the viral lytic cycle. In studies with HCMV strain TB40/E, pharmacological blockade or genetic ablation of UL97 significantly reduced the levels of mRNA and protein for IE2 and viral early and early-late genes during a second wave of viral gene expression that commenced at between 24 and 48 h postinfection. These effects were accompanied by significant defects in viral DNA synthesis and viral replication.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionin0qeh4lp25oaflk1rakob20lja9lm4j): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once