ERG (ETS-related gene) is a member of the ETS (Erythroblast-transformation specific) family of transcription factors abundantly present in vascular endothelial cells. Recent studies demonstrate that ERG has important roles in blood vessel stability and angiogenesis. However, it is unclear how ERG is potentially involved in microvascular barrier functions and permeability.
View Article and Find Full Text PDFClin Exp Pharmacol Physiol
December 2021
Microvascular hyperpermeability, the excessive leakage of fluid and proteins from the intravascular space to the interstitium, is a devastating clinical concern in haemorrhagic shock (HS), sepsis, burn and so forth. Previous studies have shown that HS-induced microvascular hyperpermeability is associated with activation of the mitochondria-mediated 'intrinsic' apoptotic signalling cascade and caspase-3 mediated disruption of the endothelial cell barrier. In this study, our objective was to test if FK506, an immunomodulator that is also known to protect mitochondria, would protect barrier functions and decrease vascular hyperpermeability following HS by acting on this pathway.
View Article and Find Full Text PDFBackground: Hemorrhagic shock (HS)-induced microvascular hyperpermeability involves disruption of endothelial cell adherens junctions leading to increase in paracellular permeability. β-Catenin, an integral component of the adherens junctional complex and Wnt pathway, and caspase 3 via its apoptotic signaling regulate endothelial cell barrier integrity. We have hypothesized that inhibiting phosphorylation of β-catenin and caspase 3 activity using glycogen synthase kinase 3-specific inhibitor SB216763 would attenuate microvascular hyperpermeability following HS.
View Article and Find Full Text PDFFollowing hemorrhagic shock (HS), vascular hyperpermeability . the leakage of fluid, nutrients and proteins into the extravascular space occurs primarily due to the disruption of the endothelial cell-cell adherens junctional complex. Studies from our laboratory demonstrate that activation of the mitochondria mediated 'intrinsic' apoptotic signaling cascade has a significant role in modulating HS-induced hyperpermeability.
View Article and Find Full Text PDFTumor necrosis factor-α (TNF-α), a pro-apoptotic cytokine, is involved in vascular hyperpermeability, tissue edema, and inflammation. We hypothesized that TNF-α induces microvascular hyperpermeability through the mitochondria-mediated intrinsic apoptotic signaling pathway. Rat lung microvascular endothelial cells grown on Transwell inserts, chamber slides, or dishes were treated with recombinant TNF-α (10 ng/ml) in the presence or absence of a caspase-3 inhibitor, Z-DEVD-FMK (100 μM).
View Article and Find Full Text PDFHemorrhagic shock leads to endothelial cell barrier dysfunction resulting in microvascular hyperpermeability. Hemorrhagic shock-induced microvascular hyperpermeability is associated with worse clinical outcomes in patients with traumatic injuries. The results from our laboratory have illustrated a possible pathophysiological mechanism showing involvement of mitochondria-mediated "intrinsic" apoptotic signaling in regulating hemorrhagic shock-induced microvascular hyperpermeability.
View Article and Find Full Text PDFJ Trauma Acute Care Surg
December 2013
Background: Burns induce systemic microvascular hyperpermeability resulting in shock, and if untreated, cardiovascular collapse. Damage to the endothelial cell adherens junctional complex plays an integral role in the pathophysiology of microvascular hyperpermeability. We hypothesized that doxycycline, a known inhibitor of matrix metalloproteinases (MMPs), could attenuate burn-induced adherens junction damage and microvascular hyperpermeability.
View Article and Find Full Text PDFBackground: Tumor necrosis factor-α (TNF-α), a cytotoxic cytokine, induces endothelial cell barrier dysfunction and microvascular hyperpermeability, leading to tissue edema, a hallmark of traumatic injuries. The objective of the present study was to determine whether B-cell lymphoma-extra large (Bcl-xL), an antiapoptotic protein, would regulate and protect against TNF-α-mediated endothelial cell barrier dysfunction and microvascular hyperpermeability.
Methods: Rat lung microvascular endothelial cells were grown as monolayers on Transwell membranes, and fluorescein isothiocyanate-bovine albumin flux (5 mg/mL) across the monolayer was measured fluorometrically to indicate changes in monolayer permeability.
Background: Microvascular hyperpermeability following conditions such as hemorrhagic shock occurs mainly owing to disruption of the adherens junctional protein complex in endothelial cells. The objective of this study was to examine the action of staurosporine, a potent activator of endogenous caspase 3 on the adherens junction and the cellular pathway through which it causes possible endothelial cell barrier dysfunction.
Methods: Rat lung microvascular endothelial cell (RLMEC) permeability was measured by fluorescein isothiocyanate-albumin flux across the monolayer in a Transwell plate.
Hemorrhagic shock (HS)-induced microvascular hyperpermeability poses a serious challenge in the management of trauma patients. Microvascular hyperpermeability occurs mainly because of the disruption of endothelial cell adherens junctions, where the "intrinsic" apoptotic signaling plays a regulatory role. The purpose of this study was to understand the role of the "extrinsic" apoptotic signaling molecules, particularly Fas-Fas ligand interaction in microvascular endothelial barrier integrity.
View Article and Find Full Text PDFβ-Catenin, a key regulator of barrier integrity, is an important component of the adherens junctional complex. Although the roles of β-catenin in maintaining the adherens junctions and Wnt signaling are known, the dynamics of β-catenin following insult and its potential role in vascular recovery/repair remain unclear. Our objective was to define β-catenin's dynamics following disruption of the adherens junctional complex and subsequent recovery.
View Article and Find Full Text PDFBackground: Paracellular microvascular hyperpermeability occurs mainly because of the disruption of the endothelial adherens junction complex. Vascular endothelial-cadherin that consists of an extracellular and intracellular domain to confer cell-cell contact is linked to the actin cytoskeletal assembly through β-catenin. Our objective was to determine the functional role of β-catenin during paracellular hyperpermeability and to evaluate whether exogenous β-catenin would protect against vascular leak.
View Article and Find Full Text PDFObjective: VE-cadherin, an integral component of the adherens junction complex, is processed through the endosome-lysosome pathway and proteasome system for degradation. Our objective was to determine if inhibition of this pathway would protect against microvascular hyperpermeability.
Methods: To induce VE-cadherin degradation, we utilized a mutant VE-cadherin protein that lacks the extracellular domain (rVE-cad CPD).
Clin Exp Pharmacol Physiol
September 2010
1. Oxidative stress induced by reactive oxygen species (ROS) is a key mediator of haemorrhagic shock (HS)-induced vascular hyperpermeability. In the present study, curcumin, a natural anti-oxidant obtained from turmeric (Curcuma longa), was tested against HS-induced hyperpermeability and associated ROS formation in rat mesenteric post-capillary venules in vivo and in rat lung microvascular endothelial cells (RLMEC) in vitro.
View Article and Find Full Text PDFBackground: Mitochondria-mediated apoptotic signaling contributes to microvascular hyperpermeability. We hypothesized that cyclosporine A (CsA), which protects mitochondrial transition pores, would attenuate hyperpermeability independent of its calcineurin inhibitory property.
Methods: Hyperpermeability was induced in microvascular endothelial cell monolayers using proapoptotic BAK or active caspase-3 after CsA or a specific calcineurin inhibitor, calcineurin autoinhibitory peptide (CIP), treatment.
Vascular hyperpermeability is a clinical complication associated with hemorrhagic shock (HS) and occurs mainly because of the disruption of the adherens junctional complex. The objective of this study was to understand the role of 17beta-estradiol in HS-induced hyperpermeability particularly focusing on estrogen receptors. In male Sprague-Dawley rats, HS was induced by withdrawing blood to reduce the mean arterial pressure to 40 mmHg for 1 hour followed by 1 hour of resuscitation to 90 mmHg.
View Article and Find Full Text PDFBurn injury is associated with a significant leak of intravascular fluid into the interstitial space, requiring large amounts of volume resuscitation. Activation of the intrinsic (mitochondrial) apoptotic pathway has been associated with vascular hyperpermeability. We hypothesized that vascular hyperpermeability following burns is also mediated via this pathway.
View Article and Find Full Text PDFRecent studies from our laboratory demonstrated the involvement of endothelial cell reactive oxygen species (ROS) formation and activation of apoptotic signaling in vascular hyperpermeability after hemorrhagic shock (HS). The objective of this study was to determine if (-)-deprenyl, an antioxidant with antiapoptotic properties, would attenuate HS-induced vascular hyperpermeability. In rats, HS was induced by withdrawing blood to reduce the MAP to 40 mmHg for 60 min followed by resuscitation for 60 min.
View Article and Find Full Text PDFBackground: Hemorrhagic shock (HS) is associated with the activation of caspase-dependent or -independent apoptotic signaling pathways, disruption of endothelial cell adherens junctions, and vascular hyperpermeability. Recent studies have suggested that the vascular hyperpermeability observed after HS is associated with activation of the intrinsic apoptotic signaling cascade resulting in caspase-mediated cleavage of endothelial cell adherens proteins and subsequent cell-cell detachment. We hypothesized that cyclosporine A (CsA) would attenuate vascular hyperpermeability after HS by protecting mitochondrial transition pores and thereby preventing the activation of caspase-mediated apoptotic signaling.
View Article and Find Full Text PDFBackground/aims: Preeclampsia is a hypertensive disorder which develops de novo in women during pregnancy. The urinary excretion of the cardiotonic steroid, marinobufagenin (MBG), is increased prior to the development of hypertension. Preeclamptic patients are volume expanded but much of the excess salt and water appears to be located primarily in the interstitial space.
View Article and Find Full Text PDFBackground: Previous work from our laboratory demonstrated the involvement of "intrinsic" mitochondrial apoptotic signaling in vascular hyperpermeability. The objective of this study was to determine if 17beta-estradiol, a known inhibitor of apoptosis, would attenuate microvascular endothelial cell hyperpermeability.
Methods: Rat lung microvascular endothelial cell monolayers were treated with 17beta-estradiol or estrogen-receptor antagonist ICI 182780 after transfection with BAK peptide (5 microg/mL).
Hemorrhagic shock (HS) is associated with the disruption of endothelial cell barrier leading to vascular hyperpermeability. Previous studies from our laboratory implicate reactive oxygen species (ROS) and the intrinsic apoptotic signaling cascades as mediators of vascular hyperpermeability after HS. Here we report the protective effects of alpha-lipoic acid, a natural antioxidant with antiapoptotic properties, against vascular hyperpermeability after HS.
View Article and Find Full Text PDFBackground: Heart disease is one of the leading causes of death in the United States, killing nearly one million people every year. Inflammatory mediators or cytokines are released following myocardial infarction and ischemia/reperfusion injury. These cytokines, of which interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha (TNF-alpha) are among the most important, propagate the activation of a multitude of signaling pathways, such as the protein kinase C (PKC) and myosin light chain kinase (MLCK) pathways, which lead to deleterious changes in the structure and function of the coronary microvascular endothelium.
View Article and Find Full Text PDFIt has been shown that the intrinsic mitochondrial apoptotic cascade is activated in vascular hyperpermeability after conditions such as hemorrhagic shock. Studies from our laboratory demonstrated mitochondrial reactive oxygen species (ROS) formation in endothelial cells during vascular hyperpermeability. We hypothesized that the participation of mitochondrial ROS in the intrinsic apoptotic cascade results in microvascular endothelial cell hyperpermeability.
View Article and Find Full Text PDFStudies from our laboratory demonstrated the involvement of intrinsic apoptotic signaling in hyperpermeability following hemorrhagic shock (HS). Angiopoietin 1 (Ang-1), a potent inhibitor of hyperpermeability, was recently shown to inhibit apoptosis. The purpose of our study was to determine the effectiveness of Ang-1 in attenuating HS-induced hyperpermeability and its relationship to apoptotic signaling.
View Article and Find Full Text PDF