At rest children with prenatal alcohol exposure (PAE) exhibit impaired static and dynamic functional connectivity, along with decreased alpha oscillations. Sex-specific information regarding the impact of PAE on whole-brain resting-state gamma spectral power remains unknown. Eyes-closed and eyes-open MEG resting-state data were examined in 83 children, ages 6-13 years of age.
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
April 2023
Background: Prenatal alcohol exposure (PAE) can result in harmful and long-lasting neurodevelopmental changes. Children with PAE or a fetal alcohol spectrum disorder (FASD) have decreased white matter volume and resting-state spectral power compared to typically developing controls (TDC) and impaired resting-state static functional connectivity. The impact of PAE on resting-state dynamic functional network connectivity (dFNC) is unknown.
View Article and Find Full Text PDFPrenatal alcohol exposure (PAE) can result in long-lasting changes to physical, behavioral, and cognitive functioning in children. PAE might result in decreased white matter integrity, corticothalamic tract integrity, and alpha cortical oscillations. Previous investigations of alpha oscillations in PAE/fetal alcohol spectrum disorder (FASD) have focused on average spectral power at specific ages; therefore, little is known about alpha peak frequency (APF) or its developmental trajectory making this research novel.
View Article and Find Full Text PDFNeural oscillations may be sensitive to aspects of brain maturation such as myelination and synaptic density changes. Better characterization of developmental trajectories and reliability is necessary for understanding typical and atypical neurodevelopment. Here, we examined reliability in 110 typically developing children and adolescents (aged 9-17 years) across 2.
View Article and Find Full Text PDFThe reliability of magnetoencephalography (MEG) resting-state functional connectivity in schizophrenia (SZ) is unknown as previous research has focused on healthy controls (HC). Here, we examined reliability in 26 participants (13-SZ, 13-HC). Eyes opened and eyes closed resting-state data were collected on 4 separate occasions during 2 visits, 1 week apart.
View Article and Find Full Text PDFBackground: Consumption of alcohol during pregnancy impacts fetal development and may lead to a variety of physical, cognitive, and behavioral abnormalities in childhood collectively known as fetal alcohol spectrum disorder (FASD). The FASD spectrum includes children with fetal alcohol syndrome (FAS), partial fetal alcohol syndrome (pFAS), and alcohol-related neurodevelopmental disorder (ARND). Children with a FASD or prenatal alcohol exposure (PAE) have impaired white matter, reduced structural volumes, impaired resting-state functional connectivity when measured with fMRI, and spectral hypersynchrony as infants.
View Article and Find Full Text PDFWhile it is generally accepted that structural and functional brain deficits underlie the behavioral deficits associated with Fetal Alcohol Spectrum Disorders (FASD), the degree to which these problems are expressed in sensory pathology is unknown. Electrophysiological measures indicate that neural processing is delayed in visual and auditory domains. Furthermore, multiple reports of white matter deficits due to prenatal alcohol exposure indicate altered cortical connectivity in individuals with FASD.
View Article and Find Full Text PDFBackground: Despite increased reporting of resting-state magnetoencephalography (MEG), reliability of those measures remains scarce and predominately reported in healthy controls (HC). As such, there is limited knowledge on MEG resting-state reliability in schizophrenia (SZ).
Methods: To address test-retest reliability in psychosis, a reproducibility study of 26 participants (13-SZ, 13-HC) was performed.
Background: Children with fetal alcohol spectrum disorder (FASD), who were exposed to alcohol in utero, display a broad range of sensory, cognitive, and behavioral deficits, which are broadly theorized to be rooted in altered brain function and structure. Based on the role of neural oscillations in multisensory integration from past studies, we hypothesized that adolescents with FASD would show a decrease in oscillatory power during event-related gamma oscillatory activity (30 to 100 Hz), when compared to typically developing healthy controls (HC), and that such decrease in oscillatory power would predict behavioral performance.
Methods: We measured sensory neurophysiology using magnetoencephalography (MEG) during passive auditory, somatosensory, and multisensory (synchronous) stimulation in 19 adolescents (12 to 21 years) with FASD and 23 age- and gender-matched HC.
Prenatal exposure to alcohol affects the expression and function of glutamatergic neurotransmitter receptors in diverse brain regions. The present study was undertaken to fill a current gap in knowledge regarding the regional specificity of ethanol-related alterations in glutamatergic receptors in the frontal cortex. We quantified subregional expression and function of glutamatergic neurotransmitter receptors (AMPARs, NMDARs, GluN2B-containing NMDARs, mGluR1s, and mGluR5s) by radioligand binding in the agranular insular cortex (AID), lateral orbital area (LO), prelimbic cortex (PrL) and primary motor cortex (M1) of adult rats exposed to moderate levels of ethanol during prenatal development.
View Article and Find Full Text PDFChronic abuse of drugs can result in vast negative repercussions on behavioral and biological systems by altering underlying neurocircuitry. Long-term cannabinoid administration in rats leads to detrimental cellular and dendritic morphology changes. Previous studies have found that chronic treatment with delta-9-THC selectively decreases dendritic morphology and spine density in the dentate gyrus of adolescent rats (Rubino et al.
View Article and Find Full Text PDFNavigation depends on a network of neural systems that accurately monitor an animal's spatial orientation in an environment. Within this navigation system are head direction (HD) cells which discharge as a function of an animal's directional heading, providing an animal with a neural compass to guide ongoing spatial behavior. Experiments were designed to test this hypothesis by damaging the dorsal tegmental nucleus (DTN), a midbrain structure that plays a critical role in the generation of the rodent HD cell signal, and evaluating landmark based navigation using variants of the Morris water task.
View Article and Find Full Text PDFReductions in measures of dendritic morphology in the agranular insular cortex have been identified as consequences of prenatal exposure to moderate levels of ethanol in the rat. Motivated by the strong connectivity between this region of frontal cortex and the striatum and a growing body of data linking specific components of the mesocortical/limbic system to effects of ethanol and ethanol self-administration, the current study investigated the effects of moderate fetal ethanol exposure on the dendritic morphology of medium spiny neurons (MSNs) in several regions of the striatum. Throughout gestation, pregnant rat dams either consumed a saccharin solution (control) or achieved average daily blood ethanol concentrations of 84 mg% via voluntary consumption of a 5% ethanol solution.
View Article and Find Full Text PDFPrevious studies on the ontogeny of spatial learning report that rats younger than 19-21 days of age are incapable of learning the location of a platform relative to distal cues in the Morris water task. Here, we manipulated the spatial relationship of a cued platform to the pool and the distal visual room cues to investigate whether distal cues can control navigation among 16- to 24-day-old rats. Rats were trained to navigate to a cued platform in a rich distal cue environment.
View Article and Find Full Text PDFRecent findings from our laboratory indicate that alterations in frontal cortex function, structural plasticity, and related social behaviors are persistent consequences of exposure to moderate levels of ethanol during prenatal brain development [24]. Fetal-ethanol-related reductions in the expression of the immediate early genes (IEGs) c-fos and Arc and alterations in dendritic spine density in ventrolateral and medial aspects of frontal cortex suggest a dissociation reminiscent of that described by Kolb et al. [38] in which these aspects of frontal cortex undergo reciprocal experience-dependent changes.
View Article and Find Full Text PDFThe goals of the present study were to characterize the effects of prenatal exposure to moderate levels of ethanol on adult social behavior, and to evaluate fetal-ethanol-related effects on dendritic morphology, structural plasticity and activity-related immediate early gene (IEG) expression in the agranular insular (AID) and prelimbic (Cg3) regions of frontal cortex. Baseline fetal-ethanol-related alterations in social behavior were limited to reductions in social investigation in males. Repeated experience with novel cage-mates resulted in comparable increases in wrestling and social investigation among saccharin- and ethanol-exposed females, whereas social behavioral effects among males were more evident in ethanol-exposed animals.
View Article and Find Full Text PDFRecent work from our laboratory demonstrates that both young and adult rats show a preference for directional responding over place navigation in the Morris water task. Based on these findings, previous studies on the postnatal development of spatial learning have most likely assessed the ontogeny of directional responding instead of true place navigation. Here, we examined the development of directional responding and place navigation among young male and female rats using two variants of the Morris water task that specifically require directional and place responses.
View Article and Find Full Text PDF