While the elements encoding enhancers and promoters have been relatively well studied, the full spectrum of insulator elements which bind the CCCTC binding factor (CTCF), is relatively poorly characterized. This is partly due to the genomic context of CTCF sites greatly influencing their roles and activity. Here we have developed an experimental system to determine the ability of minimal, consistently sized, individual CTCF elements to interpose between enhancers and promoters and thereby reduce gene expression during differentiation.
View Article and Find Full Text PDFBackground & Aims: Long noncoding RNAs (lncRNAs) are found to have profound impacts on diverse cellular processes. Although high-throughput sequencing studies have shown the differential lncRNA expression profiles between hepatocellular carcinoma (HCC) and nontumor livers, the functional impacts of lncRNAs on HCC development await further investigation. Herein, we sought to address the functional roles of lncRNAs in HCC pathogenesis by in vivo functional screening.
View Article and Find Full Text PDFEpigenetic deregulation plays an essential role in hepatocellular carcinoma (HCC) progression. Bromodomains are epigenetic "readers" of histone acetylation. Recently, bromodomain inhibitors have exhibited promising therapeutic potential for cancer treatment.
View Article and Find Full Text PDFBackground And Aims: HCC undergoes active metabolic reprogramming. Reactive oxygen species (ROS) are excessively generated in cancer cells and are neutralized by NADPH. Malic enzymes (MEs) are the less studied NADPH producers in cancer.
View Article and Find Full Text PDFSorafenib is the standard treatment for advanced hepatocellular carcinoma (HCC). However, the development of drug resistance is common. By using genome-wide CRISPR/Cas9 library screening, we identify phosphoglycerate dehydrogenase (PHGDH), the first committed enzyme in the serine synthesis pathway (SSP), as a critical driver for Sorafenib resistance.
View Article and Find Full Text PDFObjective: Facilitates Chromatin Transcription (FACT) complex is a histone chaperone participating in DNA repair-related and transcription-related chromatin dynamics. In this study, we investigated its oncogenic functions, underlying mechanisms and therapeutic implications in human hepatocellular carcinoma (HCC).
Design: We obtained HCC and its corresponding non-tumorous liver samples from 16 patients and identified FACT complex as the most upregulated histone chaperone by RNA-Seq.
Hepatocellular carcinoma (HCC) cells exploit an aberrant transcriptional program to sustain their infinite growth and progression. Emerging evidence indicates that the continuous and robust transcription of oncogenes in cancer cells is often driven by super-enhancers (SEs). In this study, we systematically compared the SE landscapes between normal liver and HCC cells and revealed that the cis-acting SE landscape was extensively reprogrammed during liver carcinogenesis.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is the third most lethal cancer worldwide. Increasing evidence shows that epigenetic alterations play an important role in human carcinogenesis. Deregulation of DNA methylation and histone modifications have recently been characterized in HCC, but the significance of chromatin remodeling in liver carcinogenesis remains to be explored.
View Article and Find Full Text PDFHepatocellular carcinoma (HCC), accounting for 90% of primary liver cancer, is a lethal malignancy that is tightly associated with chronic hepatitis B virus (HBV) infection. HBV encodes a viral onco-protein, transactivator protein X (HBx), which interacts with proteins of hepatocytes to promote oncogenesis. Our current study focused on the interaction of HBx with a transcription factor, hypoxia-inducible factor-1α (HIF-1α), which is stabilized by low O condition (hypoxia) and is found to be frequently overexpressed in HCC intra-tumorally due to poor blood perfusion.
View Article and Find Full Text PDFNat Rev Gastroenterol Hepatol
March 2018
Hepatocellular carcinoma (HCC) is a leading lethal malignancy worldwide. However, the molecular mechanisms underlying liver carcinogenesis remain poorly understood. Over the past two decades, overwhelming evidence has demonstrated the regulatory roles of different classes of non-coding RNAs (ncRNAs) in liver carcinogenesis related to a number of aetiologies, including HBV, HCV and NAFLD.
View Article and Find Full Text PDFUnlabelled: Epigenetic alterations have contributed greatly to human carcinogenesis. Conventional epigenetic studies have predominantly focused on DNA methylation, histone modifications, and chromatin remodeling. Recently, diverse and reversible chemical modifications of RNAs have emerged as a new layer of epigenetic regulation.
View Article and Find Full Text PDFMyeloid-derived suppressor cells (MDSCs) possess immunosuppressive activities, which allow cancers to escape immune surveillance and become non-responsive to immune checkpoints blockade. Here we report hypoxia as a cause of MDSC accumulation. Using hepatocellular carcinoma (HCC) as a cancer model, we show that hypoxia, through stabilization of hypoxia-inducible factor-1 (HIF-1), induces ectoenzyme, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2/CD39L1), in cancer cells, causing its overexpression in HCC clinical specimens.
View Article and Find Full Text PDFBackground & Aims: Hepatocellular carcinoma (HCC) is a major leading cause of cancer mortality worldwide. Epigenetic deregulation is a common trait of human HCC. G9s is an important epigenetics regulator however, its role in liver carcinogenesis remains to be investigated.
View Article and Find Full Text PDFCancer cells preferentially utilize glucose and glutamine, which provide macromolecules and antioxidants that sustain rapid cell division. Metabolic reprogramming in cancer drives an increased glycolytic rate that supports maximal production of these nutrients. The folate cycle, through transfer of a carbon unit between tetrahydrofolate and its derivatives in the cytoplasmic and mitochondrial compartments, produces other metabolites that are essential for cell growth, including nucleotides, methionine, and the antioxidant NADPH.
View Article and Find Full Text PDFUnlabelled: Epigenetic deregulation plays an important role in liver carcinogenesis. Using transcriptome sequencing, we examined the expression of 591 epigenetic regulators in hepatitis B-associated human hepatocellular carcinoma (HCC). We found that aberrant expression of epigenetic regulators was a common event in HCC.
View Article and Find Full Text PDFMicroRNAs (miRNAs), an important class of small non-coding RNAs, regulate gene expression at the post-transcriptional level. miRNAs are involved in a wide range of biological processes and implicated in different diseases, including cancers. In this study, miRNA profiling and qRT-PCR validation revealed that miR-142-3p and miR-142-5p were significantly downregulated in hepatocellular carcinoma (HCC) and their expression levels decreased as the disease progressed.
View Article and Find Full Text PDFMiR-200 family is an important regulator of epithelial-mesenchymal transition and has been implicated in human carcinogenesis. However, their expression and functions in human cancers remain controversial. In the work presented here, we showed that miR-200 family members were frequently down-regulated in hepatocellular carcinoma (HCC).
View Article and Find Full Text PDFHepatocellular carcinoma (HCC) is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2) was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients.
View Article and Find Full Text PDFBackground & Aims: Hepatocellular carcinoma (HCC) is one of the most common human cancers. Recently, emerging evidence has suggested the role of long non-coding RNAs (lncRNAs) in human carcinogenesis. In this study, we aimed to investigate the expression and functional implications of lncRNAs in human HCC.
View Article and Find Full Text PDFUnlabelled: Poor prognosis of cancers, including hepatocellular carcinoma (HCC), is mainly associated with metastasis; however, the underlying mechanisms remain poorly understood. This article investigates the role of lysyl oxidase-like 2 (LOXL-2) in the biology of HCC metastasis. First, we showed that HCC metastasis relies on a collagen-modifying enzyme, LOXL2, which was significantly overexpressed in tumorous tissues and sera of HCC patients, indicating that LOXL2 may be a good diagnostic marker for HCC patients.
View Article and Find Full Text PDFAnkyrin repeat and SOCS box containing 4 (ASB4) involves in physiological process of ubiquitin-mediated proteasomal degradation. Our previous study demonstrated high expression of ASB4 in hepatocellular carcinoma (HCC) cell lines. This study further reveals its clinical implications and tumorigenic properties in HCC.
View Article and Find Full Text PDFBackground: MicroRNAs (miRNAs) belong to a group of small non-coding RNA with differential expression in tumors, including hepatocellular carcinoma (HCC).
Aim: This study investigates the involvement of miR-125b in HCC.
Methods: Clinical analysis of miR-125b was performed using data derived from miRNA profiling and qPCR.
Liver cancer (hepatocellular carcinoma, HCC) is a major malignancy worldwide. Etiologically, hepatocarcinogenesis is closely associated with HBV and HCV infections; however, its underlying molecular mechanism is not completely understood. MicroRNAs are a class of small non-coding RNAs that negatively regulate gene expression by interacting with the 3'UTR of protein-coding mRNA.
View Article and Find Full Text PDFUnlabelled: Hepatocellular carcinoma (HCC) is a major liver malignancy. We previously demonstrated that deregulation of epigenetic regulators is a common event in human HCC. Suppressor of variegation 3-9 homolog 1 (SUV39H1), the prototype of histone methyltransferase, is the major enzyme responsible for histone H3 lysine 9 trimethylation, which, essentially, is involved in heterochromatin formation, chromosome segregation, and mitotic progression.
View Article and Find Full Text PDF