Publications by authors named "Felder-Flesch D"

Heating mediated by iron oxide nanoparticles subjected to near infrared irradiation has recently gained lots of interest. The high optical loss values reported in combination with the optical technologies already existing in current clinical practices, have made optical heating mediated by iron oxide nanoparticles an attractive choice for treating internal or skin tumors. However, the identification of the relevant parameters and the influence of methodologies for quantifying the optical losses released by iron oxide nanoparticles are not fully clear.

View Article and Find Full Text PDF

Dendronized oligoethylene glycols (dendron OEGs) with two phosphonate groups (phosphonate ) have been drawing significant attention as a new class of coating materials for superparamagnetic iron oxide surfaces. However, despite dendron OEGs showing outstanding stability in physiological fluids in previous studies, little is understood about their structure and mechanical properties. Herein we report the surface and internal structures and mechanical properties of dendron OEGs, and quantitatively determine their ability to avoid non-specific adhesion of blood platelets.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) are well-known contrast agents for MRI for a wide range of sizes and shapes. Their use as theranostic agents requires a better understanding of their magnetic hyperthermia properties and also the design of a biocompatible coating ensuring their stealth and a good biodistribution to allow targeting of specific diseases. Here, biocompatible IONPs of two different shapes (spherical and octopod) were designed and tested and to evaluate their abilities as high-end theranostic agents.

View Article and Find Full Text PDF

Being crucial under several pathological conditions, tumors, and tissue engineering, the MRI tracing of hypoxia within cells and tissues would be improved by the use of nanosystems allowing for direct recognition of low oxygenation and further treatment-oriented development. In the present study, we functionalized dendron-coated iron oxide nanoparticles (dendronized IONPs) with a bioreductive compound, a metronidazole-based ligand, to specifically detect the hypoxic tissues. Spherical IONPs with an average size of 10 nm were obtained and then decorated with the new metronidazole-conjugated dendron.

View Article and Find Full Text PDF

Dendrons consisting of two phosphonate functions and three oligo(ethylene glycol) (OEG) chains grafted on a central phenoxyethylcarbamoylphenoxy group were synthesized and investigated as Langmuir monolayers at the surface of water. The OEG chain in the position was grafted with a -Bu end-group, a hydrocarbon chain, or a partially fluorinated chain. These dendrons are models of structurally related OEG dendrons that were found to significantly improve the stability of aqueous dispersions of iron oxide nanoparticles when grafted on their surface.

View Article and Find Full Text PDF

Dendrons fitted with three oligo(ethylene glycol) (OEG) chains, one of which contains a fluorinated or hydrogenated end group and bears a bisphosphonate polar head (C X OEGDen, X = F or H; = 2 or 4), were synthesized and grafted on the surface of iron oxide nanoparticles (IONPs) for microbubble-mediated imaging and therapeutic purposes. The size and stability of the dendronized IONPs (IONP@C X OEGDen) in aqueous dispersions were monitored by dynamic light scattering. The investigation of the spontaneous adsorption of IONP@C X OEGDen at the interface between air or air saturated with perfluorohexane and an aqueous phase establishes that exposure to the fluorocarbon gas markedly increases the rate of adsorption of the dendronized IONPs to the gas/water interface and decreases the equilibrium interfacial tension.

View Article and Find Full Text PDF

Bone and osteochondral defects represent one of the major causes of disabilities in the world. Derived from traumas and degenerative pathologies, these lesions cause severe pain, joint deformity, and loss of joint motion. The standard treatments in clinical practice present several limitations.

View Article and Find Full Text PDF

Owing to the great potential of iron oxide nanoparticles (NPs) for nanomedicine, large efforts have been made to better control their magnetic properties, especially their magnetic anisotropy to provide NPs able to combine imaging by MRI and therapy by magnetic hyperthermia. In that context, the design of anisotropic NPs appears as a very promising and efficient strategy. Furthermore, their bioactive coating also remains a challenge as it should provide colloidal stability, biocompatibility, furtivity along with good water diffusion for MRI.

View Article and Find Full Text PDF

The engineering of iron oxide nanoparticles (IONPs) for biomedical use has received great interest over the past decade. In the present study we investigated the biocompatibility of IONPs grafted with linear (2P) or generation 1 (2PG1) or 2 (2PG2) dendronized oligoethyleneglycol units in THP-1-derived macrophages. To evaluate IONP effects on cell functionality and homeostasis, mitochondrial function (MTT assay), membrane permeability (LDH release), inflammation (IL-8), oxidative stress (reduced glutathione, GSH), NLRP3 inflammasome activation (IL-1β) and nanoparticle cellular uptake (intracellular iron content) were quantified after a 4-h or 24-h cell exposure to increasing IONP concentrations (0-300 µg Fe/mL).

View Article and Find Full Text PDF

The biodistribution of dendronized iron oxides, NPs10@D1_DOTAGA and melanin-targeting NPs10@D1_ICF_DOTAGA, was studied in vivo using magnetic resonance imaging (MRI) and planar scintigraphy through [Lu]Lu-radiolabeling. MRI experiments showed high contrast power of both dendronized nanoparticles (DPs) and hepatobiliary and urinary excretions. Little tumor uptake could be highlighted after intravenous injection probably as a consequence of the negatively charged DOTAGA-derivatized shell, which reduces the diffusion across the cells' membrane.

View Article and Find Full Text PDF

Superparamagnetic spherical iron oxide nanoparticles of 10 nm diameter have been synthesized by thermal decomposition and grafted through a direct ligand exchange protocol with two dendrons bearing respectively a monophosphonic anchor (D2) or a biphosphonic tweezer (D2-2P) at their focal point. Physico-chemical characterization techniques such as dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and superconducting quantum interference device (SQUID) magnetometry were used to assess their composition, colloidal stability and magnetic properties. High-resolution magic angle spinning (HR-MAS) nuclear magnetic resonance (NMR) spectroscopy studies have been conducted to understand the organic shell composition and to determine both the grafting rate of the dendrons onto the nanoparticle surface and the influence of the remaining oleic acid originating from the synthesis protocol on the cellular uptake.

View Article and Find Full Text PDF

The functionalization process of iron oxide nanoparticles (NPs) is a major step and has to ensure a small particle size distribution (below 100 nm) and to preserve good magnetic properties suitable for in vivo applications. Two functionalization processes are here compared to coat iron oxide NPs, synthesized by thermal decomposition, with dendron molecules bearing either a mono- or a bisphosphonate anchoring group. The two processes are direct ligand exchange and the simultaneous ligand exchange and phase transfer process.

View Article and Find Full Text PDF

Background And Objective: The high degree of malignancy of tumour cells is linked to alterations of many physiological parameters like the intracellular pH (pHi). The pHi in cancer cell line is regulated by the carbonic anhydrase IX (CA IX). The main enzymatic function of the CA IX protein is to catalyze the hydration of carbon dioxide into bicarbonate ions and protons.

View Article and Find Full Text PDF

Iron oxide nanoparticles are widely used for biological applications thanks to their outstanding balance between magnetic properties, surface-to-volume ratio suitable for efficient functionalization and proven biocompatibility. Their development for MRI or magnetic particle hyperthermia concentrates much of the attention as these nanomaterials are already used within the health system as contrast agents and heating mediators. As such, the constant improvement and development for better and more reliable materials is of key importance.

View Article and Find Full Text PDF

Upconverting nanoparticles (UCNPs) were successfully dendronized for fluorescence medical imaging applications. The structural and morphological characterizations of resulting core/shell NaYF:Yb,Tm@dendrons nanoparticles were performed by means of X-ray diffraction, infrared spectroscopy and transmission electron microscopy. In vitro cytotoxicity assays have evidenced their low toxicity.

View Article and Find Full Text PDF

Transition metal-fullerenes complexes with metal atoms bound on the external surface of C60 are promising building blocks for next-generation fuel cells and catalysts. Yet, at variance with endohedral M@C60, they have received a limited attention. By resorting to first principles simulations, we elucidate structural and electronic properties for the Pd-C60, Pt-C60, PtPd-C60, Pd2-C60, and Pt2-C60 complexes.

View Article and Find Full Text PDF

Integration of nanoparticles (NPs) into nanodevices is a challenge for enhanced sensor development. Using NPs as building blocks, a bottom-up approach based on one-pot morphogen-driven electroclick chemistry is reported to self-construct dense and robust conductive Fe3O4 NP films. Deposited covalent NP assemblies establish an electrical connection between two gold electrodes separated by a 100 nm-wide nanotrench.

View Article and Find Full Text PDF

Nanomedicine can take advantage of the recent developments in nanobiotechnology research areas for the creation of platforms with superior drug carrier capabilities, selective responsiveness to the environment, unique contrast enhancement profiles and improved accumulation at the disease site. Colloidal inorganic nanoparticles (NPs) have been attracting considerable interest in biomedicine, from drug and gene delivery to imaging, sensing and diagnostics. It is essential to modify the NPs surface to have enhanced biocompatibility and reach multifunctional systems for the in vitro and in vivo applications, especially in delivering drugs locally and recognizing overexpressed biomolecules.

View Article and Find Full Text PDF

In bioimaging, targeting allows refining the diagnosis by improving the sensitivity and especially the specificity for an earlier diagnosis. Two In-radiolabeled dendritic nanoprobes (DPs) (In-2, In-3) and their model counterparts (In-1, In-4) are designed and assessed for in vitro and in vivo tumor targeting efficiency in a murine melanoma models. Tumor uptake is correlated to dendrimer multivalency and reaches values as high as 12.

View Article and Find Full Text PDF

The functionalization of spherical superparamagnetic iron oxide nanoparticles (SPION) of 10 nm with a linear monophosphonate (L1) and also PEGylated mono-phosphonated dendrons of growing generation (D2-G1, -G2 and -G3) yielded dendritic nano-objects of 15 to 30 nm in size, stable in physiological media and showing both renal and hepatobiliary elimination. The grafting of the different molecules has been confirmed by IR spectroscopy and elemental analysis. The colloidal stability of functionalized NS10 has been evaluated in water and in different physiological media.

View Article and Find Full Text PDF

A majority of MRI procedures requiring intravascular injections of contrast agents are performed with paramagnetic chelates. Such products induce vascular signal enhancement and they are rapidly excreted by the kidneys. Unfortunately, each chelate is made of only one paramagnetic ion, which, taken individually, has a limited impact on the MRI signal.

View Article and Find Full Text PDF

Great balls of fire: C60 and Y3 N@C80 were connected to the same oligo(phenyleneethynylene) unit to investigate their structural and photophysical properties. NMR investigations revealed a fulleroid structure for the Y3 N@C80 derivative, and both dyads gave rise to columnar phases with core-shell cylinders. The black and gray spheres represent the fullerene core units of the Y3 N@C80 derivative, which is an ideal candidate to be involved in energy and electron transfer processes.

View Article and Find Full Text PDF

The functionalization of superparamagnetic iron oxide nanoparticles (SPION) with PEGylated PAMAM dendrons through a bisphosphonate tweezers yielded 15 and 30 nm dendritic nano-objects stable in physiological media and showing both renal and hepatobiliary elimination.

View Article and Find Full Text PDF

Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry".

View Article and Find Full Text PDF

Aqueous suspensions of dendronized iron oxide nanoparticles (NPs) have been obtained after functionalization, with two types of dendrons, of NPs synthesized either by coprecipitation (leading to naked NPs in water) or by thermal decomposition (NPs in situ coated by oleic acid in an organic solvent). Different grafting strategies have been optimized depending on the NPs synthetic method. The size distribution, the colloidal stability in isoosmolar media, the surface complex nature as well as the preliminary biokinetic studies performed with optical imaging, and the contrast enhancement properties evaluated through in vitro and in vivo MRI experiments, have been compared as a function of the nature of both dendrons and NPs.

View Article and Find Full Text PDF