Topological indices (TIs) of chemical graphs of drugs hold the potential to compute important properties and biological activities leading to more thoughtful drug design. Here, we considered certain drugs treating eye-related disorders, including cataract, glaucoma, diabetic retinopathy, and macular degeneration. By combining modeling and decision-makings approaches, this study presents a cost-effective way to comprehend the behavior of molecules.
View Article and Find Full Text PDFThis article explores the structural properties of eleven distinct chemical graphs that represent sulfonamide drugs using topological indices by developing python algorithm. To find significant relationships between the topological characteristics of these networks and the characteristics of the associated sulfonamide drugs. We use quantitative structure-property relationship (QSPR) approaches.
View Article and Find Full Text PDFGraphyne and Graphdiyne Nanoribbons reveal significant prospective with diverse applications. In electronics, they propose unique electronic properties for high-performance nanoscale devices, while in catalysis, their excellent surface area and reactivity sort them valuable catalyst supports for numerous chemical reactions, contributing to progresses in sustainable energy and environmental remediation. The topological indices (TIs) are numerical invariants that provide important information about the molecular topology of a given molecular graph.
View Article and Find Full Text PDFObjective: The study of total fuzzy graphs in all cases is crucial for the development of both theories and applications of the graph theory. Without theory the application will not be developed. Hence this manuscript attempted to theorize the conception of partially total fuzzy graphs.
View Article and Find Full Text PDF