Radionuclide therapy is expected to be a powerful tool for glioma treatment. Here, we introduced a novel nuclear nanomedicine based on polydopamine (PDA), incorporating fibroblast activation protein inhibitor (FAPI) and macrocyclic chelator (DOTA) for specific cancer targeting and Lu labeling. The synthesized nanoradiopharmaceutical, Lu-DOTA-PEG-PDA-FAPI, exhibits good stability in serum, saline and PBS over 5 days.
View Article and Find Full Text PDFRecently, At-related endoradiotherapy has emerged as an important oncotherapy strategy. Conjugating At with a nanocarrier provides a vital candidate for radionuclide therapy of various malignant tumors. In this study, we proposed utilizing the intrinsically high affinity of heavy halogens and sulfhydryl compounds for metallic silver to achieve highly efficient conjugation between At and Ag-based nanoparticles in a simple way.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Fibroblast activation protein-α (FAPα) is highly expressed in tumor-associated cells and has become one of the most attractive targeting sites in cancer diagnosis and therapy. To ameliorate the rapid metabolism of FAPα inhibitor (FAPI), here, a multifunctional binding agent was introduced to simultaneously achieve At radiolabeling and tumor retention prolongation of corresponding radiolabeled drug. At-APBA-FAPI was successfully synthesized by conjugating At with the designed FAPI carrier in satisfactory radiochemical yield (>60 %).
View Article and Find Full Text PDFRadiopharmaceuticals are of significant importance in the fields of tumor imaging and therapy. In recent decades, the increasing role of nanotechnology has led to the attractive concept of nanoradiopharmaceuticals. Consequently, it is imperative to provide a concise summary of the necessary guidelines to facilitate the translation of nanoradiopharmaceuticals.
View Article and Find Full Text PDFReduction of soluble U(VI) to insoluble U(IV) based on photocatalysts is a simple, environmentally friendly, and efficient method for treating radioactive wastewater. The present study involved the systematic comparison of the photoelectric properties of three metalloporphyrins with different metal centers and the synthesis of a novel porphyrin-based hydrogen-bonded organic framework (Ni-pHOF) photocatalyst by modulating the surface charge microenvironment in porphyrin for enhanced photocatalytic removal of U(VI) from wastewater. Compared to the metal-free HOF, the surface charge microenvironment around the Ni atom in Ni-pHOF accelerated the reduction kinetics of U(VI) under visible light illumination at the initial moment, showing a high removal rate, even in air.
View Article and Find Full Text PDFRa ( = 3.63 d), an α-emitting radionuclide, holds significant promise in cancer endoradiotherapy. Current Ra-related therapy is still scarce because of the lack of reliable radionuclide supply.
View Article and Find Full Text PDFNo-carrier-added (NCA) Lu is one of the most interesting nuclides for endoradiotherapy. With the dramatically rapid development of radiopharmaceutical and nuclear medicine, there is a sharp increase in the radionuclide supply of NCA Lu, which has formed a great challenge to current radiochemical separation constituted on classical materials. Hence, it is of vital importance to design and prepare new functional materials able of recovering Lu from an irradiated target with excellent efficacy.
View Article and Find Full Text PDFTheranostic nanomedicine combined bioimaging and therapy probably rises more helpful and interesting opportunities for personalized medicine. In this work, Lu radiolabeling and surface PEGylation of biocompatible covalent polymer nanoparticles (CPNs) have generated a new theranostic nanoformulation ( Lu-DOTA-PEG-CPNs) for targeted diagnosis and treatment of breast cancer. The in vitro anticancer investigations demonstrate that Lu-DOTA-PEG-CPNs possess excellent bonding capacity with breast cancer cells (4T1), inhibiting the cell viability, leading to cell apoptosis, arresting the cell cycle, and upregulating the reactive oxygen species (ROS), which can be attributed to the good targeting ability of the nanocarrier and the strong relative biological effect of the radionuclide labelled compound.
View Article and Find Full Text PDFRecently, endoradiotherapy based on actinium-225 (Ac) has attracted increasing attention, which is due to its α particles can generate maximal damage to cancer cells while minimizing unnecessary radiation effects on healthy tissues. Herein, In/Ac-radiolabeled conjugated polymer nanoparticles (CPNs) coated with amphiphilic polymer DSPE-PEG-DOTA have been developed as a new injectable nano-radiopharmaceuticals for cancer endoradiotherapy under the guidance of nuclear imaging. Single photon emission computed tomography/computed tomography (SPECT/CT) using In-DOTA-PEG-CPNs as nano probe indicates a prolonged retention of radiolabeled nanocarriers, which was consistent with the in vivo biodistribution examined by direct radiometry analysis.
View Article and Find Full Text PDFFor a broader understanding of uranium migration affected by microorganisms in natural anaerobic environment, the bioreduction of uranium(Ⅵ) (U(Ⅵ)) was revealed in Bacillus thuringiensis, a dominant bacterium strain with potential of uranium-tolerant isolated from uranium contaminated soil. The reduction behavior was systematically investigated by the quantitative analysis of U(Ⅳ) in bacteria, and mechanism was inferred from the pathway of electron transmission. Under anaerobic conditions, appropriate biomass and sodium lactate as electron donor, reduction behavior of U(Ⅵ) induced by B.
View Article and Find Full Text PDFNano-metal-organic frameworks (nano-MOFs) labeled with radionuclides have shown great potential in the anticancer field. In this work, we proposed to combine fluorescence imaging (FI) with nuclear imaging to systematically evaluate the tumor inhibition of new nanomedicines from living cancer cells to the whole body, guiding the design and application of a high-performance anticancer radiopharmaceutical to glioma. An Fe-based nano-MOF vector, MIL-101(Fe)/PEG-FA, was decorated with fluorescent sulfo-cyanine7 (Cy7) to investigate the binding affinity of the targeting nanocarriers toward glioma cells , as well as possible administration modes for cancer therapy.
View Article and Find Full Text PDFThe sorption behavior of U(VI) on Tamusu clay sampled from a pre-selected high-level radioactive waste (HLW) disposal site in Inner Mongolia (China) was studied systematically in the U(VI)-CO solution at pH 7.8 by batch experiments. The results demonstrated that the distribution coefficients (K) decreased with the increasing values of pH, [U(VI)], and ionic strength, but increased with the extended time and the rising temperature.
View Article and Find Full Text PDFThe reduction of soluble U(VI) to insoluble U(IV) precipitates by visible light is an environmentally friendly and highly effective strategy to remove uranium from uranium-containing radioactive wastewater. Herein, a porous hydrogen-bonded organic framework (HOF) of UPC-H4a was self-assembled by intermolecular hydrogen bonds of 5,10,15,20-tetra(4-(2,4-diaminotriazine)phenyl) porphyrin to remove U(VI) from aqueous solution. UPC-H4a has high crystallinity with permanent porosity, excellent photocatalytic property, good chemical stability, and strong photocatalytic reducibility.
View Article and Find Full Text PDFAlmost a third of all fatalities may be attributed to cardiovascular disease (CVD), making it a primary cause of mortalities worldwide. Better diagnostic tools and secure, non-invasive imaging techniques are needed to offer accurate information on CVD progression. Several elements contribute to the success of CVD personalized therapy, and two of the most crucial are accurate diagnosis and early detection.
View Article and Find Full Text PDFAc is considered as one of the most promising radioisotopes for alpha-therapy because its emitted high-energy α-particles can efficiently damage tumor cells. However, it also represents a significant threat to healthy tissues owing to extremely high radiotoxicity if targeted therapy fails. This calls for a pressing requirement of monitoring the biodistribution of Ac during the treatment of tumors.
View Article and Find Full Text PDFThe combination of chemotherapy and phototherapy has received tremendous attention in multimodal cancer therapy. However, satisfactory therapeutic outcomes of chemo-photothermal therapy (chemo-PTT) still remain challenging. Herein, a biocompatible smart nanoplatform based on benzothiazole-linked conjugated polymer nanoparticles (CPNs) is rationally designed, for effectively loading doxorubicin (DOX) and Mo-based polyoxometalate (POM) through both dynamic chemical bond and intermolecular interactions, with an expectation to obtain new anticancer drugs with multiple stimulated responses to the tumor microenvironment (TME) and external laser irradiation.
View Article and Find Full Text PDFUranium biomineralization can slow uranium migration in the environment and thus prevent it from further contaminating the surroundings. Investigations into the uranium species, pH, inorganic phosphate (Pi) concentration, and microbial viability during biomineralization by microorganisms are crucial for understanding the mineralization mechanism. In this study, Bacillus thuringiensis X-27 was isolated from soil contaminated with uranium and was used to investigate the formation process of uranium biominerals induced by X-27.
View Article and Find Full Text PDFNano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design.
View Article and Find Full Text PDFAs a biosorbent, algae are frequently used for the biotreatment or bioremediation of water contaminated by heavy metal or radionuclides. However, it is unclear that whether or not the biomineralization of these metal or radionuclides can be induced by algae in the process of bioremediation and what the mechanism is. In this work, Ankistrodsemus sp.
View Article and Find Full Text PDFBackground: Astatine-211 is an α-emitter with high-energy α-ray and high cytotoxicity for cancer cells. However, the targeted alpha therapy (TAT) also suffers from insufficient systematic immune activation, resulting in tumor metastasis and relapse. Combined immune checkpoint blockade (ICB) with chemodynamic therapy (CDT) could boost antitumor immunity, which may magnify the immune responses of TAT.
View Article and Find Full Text PDFTargeted radionuclide therapy based on α-emitters plays an increasingly important role in cancer treatment. In this study, we proposed to apply a heterodimeric peptide (iRGD-C6-lys-C6-A7R) targeting both VEGFR and integrins as a new vector for At radiolabeling to obtain high-performance radiopharmaceuticals with potential in targeted alpha therapy (TAT). An astatinated peptide, iRGD-C6-lys(At-ATE)-C6-A7R, was prepared with a radiochemical yield of ∼45% and high radiochemical purity of >95% via an electrophilic radioastatodestannylation reaction.
View Article and Find Full Text PDFThe systemic drug has historically been preferred for the treatment of the majority of pathological conditions, particularly liver cancer. Indeed, this mode of treatment is associated with adverse reactions, toxicity, off-target accumulation, and rapid hepatic and renal clearance. Numerous efforts have been made to design systemic therapeutic carriers to improve retention while decreasing side effects and clearance.
View Article and Find Full Text PDFThe important role of microbes in the biomineralization and migration behavior of uranium in the field of environmental chemistry has been well emphasized in previous work. However, limited work on mineralization processes of indigenous microorganism has prevented us from a deeper understanding of the process and mechanisms of uranium biomineralization. In this work, the dynamic process and mechanism of uranium biomineralization in Enterobacter sp.
View Article and Find Full Text PDFVascular endothelial growth factor receptor (VEGFR) and integrin αv are over-expressed in angiogenesis of variety malignant tumors with key roles in angiogenesis, and have been proven as valuable targets for cancer imaging and treatment. In this study, a heterodimeric peptide targeting VEGFR and integrin was designed, and radiolabeled with zirconium-89 (Zr) for PET imaging of glioma. Zr-DFO-heterodimeric peptide, a the newly developed probe, was prepared with radiochemical yield of 88.
View Article and Find Full Text PDFIn past decades, nanoscale metal-organic frameworks (NMOFs) have drawn more and more attention in multimodal imaging and targeting therapy of various malignant cancers. Here, we proposed to dope In into fluorescent In-based NMOFs (In-MIL-68-NH ), with an attempt to prepare a new nanomedicine with great anticancer potential. As a proof of concept, the obtained NMOF (In-MIL-68/PEG-FA) with targeting motifs is able to act as a fluorescent probe to achieve Hela cell imaging.
View Article and Find Full Text PDF