Insecticide resistance has been a problem in both the agricultural pests and vectors. Revealing the detoxification mechanisms may help to better manage insect pests. Here, we showed that arylalkylamine N-acetyltransferase 1 (AANAT1) regulates intestinal detoxification process through modulation of reactive oxygen species (ROS)-activated transcription factors cap"n"collar isoform-C (CncC): muscle aponeurosis fibromatosis (Maf) pathway in both the oriental fruit fly, Bactrocera dorsalis, and the arbovirus vector, Aedes aegypti.
View Article and Find Full Text PDFAgmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome.
View Article and Find Full Text PDFShape-shifting helical gels have been created by various routes, notably by photolithography. We explore electron-beam lithography as an alternative to prescribe microhelix formation in tethered patterns of pure poly(acrylic acid). Simulations indicate the nanoscale spatial distribution of deposited energy that drives the loss of acid groups and crosslinking.
View Article and Find Full Text PDFAlthough the study of many genes and their protein products is limited by the availability of high-quality antibodies, this problem could be solved by fusing a tag/reporter to an endogenous gene using a gene-editing approach. The type II bacterial CRISPR/Cas system has been demonstrated to be an efficient gene-targeting technology for many insects, including the oriental fruit fly Bactrocera dorsalis. However, knocking in, an important editing method of the CRISPR/Cas9 system, has lagged in its application in insects.
View Article and Find Full Text PDFInfection by SARS-CoV-2 is dependent on binding of the viral spike protein to angiotensin converting enzyme 2 (ACE2), a membrane glycoprotein expressed on epithelial cells in the human upper respiratory tract. Recombinant ACE2 protein has potential application for anti-viral therapy. Here we co-transfected mouse fibroblasts (A9 cells) with a cloned fragment of human genomic DNA containing the intact ACE2 gene and an unlinked neomycin phosphotransferase gene, and then selected stable neomycin-resistant transfectants.
View Article and Find Full Text PDFThe arylalkylamine N-acetyltransferase (AANAT) enzymes catalyze the acetyl-CoA-dependent acetylation of an amine or arylalkylamine, which is involved in important biological processes of insects. Here, we carried out the molecular and biochemical identification of an arylalkylamine N-acetyltransferase (AANAT) from the oriental fruit fly, Bactrocera dorsalis. Using a bacterial expression system, we expressed and purified the encoded recombinant BdorAANAT1-V3 protein.
View Article and Find Full Text PDFAminoglycoside antibiotics interfere with the selection of cognate tRNAs during translation, resulting in the synthesis of aberrant proteins that are the ultimate cause of cell death. However, the toxic potential of aberrant proteins and how they avoid degradation by the cell's protein quality control (QC) machinery are not understood. Here we report that levels of the heat shock (HS) transcription factor σ32 increased sharply following exposure of Escherichia coli to the aminoglycoside kanamycin (Kan), suggesting that at least some of the aberrant proteins synthesized in these cells were recognized as substrates by DnaK, a molecular chaperone that regulates the HS response, the major protein QC pathway in bacteria.
View Article and Find Full Text PDFTo evaluate the impact of preoperative use of intravenous contrast media (ICM) on the excellent response (ER) rates in a cohort of intermediate-risk differentiated thyroid cancer (DTC) patients who received total thyroidectomy (TT) and low-dose radioactive iodine (RAI) therapy. A total of 683 consecutive patients were retrospectively reviewed in a single center between August 2016 and August 2018. Patients were divided into ICM group ( = 532) and non-ICM group ( = 151).
View Article and Find Full Text PDFWe use electron-beam patterned functional microgels to integrate self-reporting molecular beacons, dielectric microlenses, and solid-phase and/or solution-phase nucleic acid amplification in a viral-detection microarray model. The detection limits for different combinations of these elements range from 10-10 M for direct target-beacon hybridization alone to 10-18 M when all elements are integrated simultaneously.
View Article and Find Full Text PDFBecause of its widely known antifouling properties, a variety of lithographic approaches has been used to pattern surfaces with poly(ethylene glycol) (PEG) to control surface interactions with biomolecules and cells over micro- and nanolength scales. Often, however, particular applications need additional functions within PEG-patterned surfaces. Monofunctional films can be generated using PEG modified to include a chemically functional group.
View Article and Find Full Text PDFIn contrast to photolithography where particular wavelengths of light can couple to specific photochemistries, electron-beam lithography can drive competing chemistries. To separate surface-grafting, cross-linking, and chemical functionality, we studied the effects of 2 keV electrons on thin films of poly(ethylene glycol) end-functionalized with hydroxyls (PEG-OH) or biotins (PEG-B). Similarities in the dose-dependent thickness changes of the patterned PEGs indicate that surface grafting and cross-linking primarily involve the ethylene oxide main chain.
View Article and Find Full Text PDFThe tethering of molecular beacon oligonucleotide detection probes to surface-patterned poly(ethylene glycol) (PEG) microgels has enabled the integration of molecular beacons into a microarray format. The microgels not only localize the probes to specific surface positions but also maintain them in a waterlike environment. Here we extend the concept of microgel tethering to include dielectric microlenses.
View Article and Find Full Text PDFSolid-phase oligonucleotide amplification is of interest because of possible applications to next-generation sequencing, multiplexed microarray-based detection, and cell-free synthetic biology. Its efficiency is, however, less than that of traditional liquid-phase amplification involving unconstrained primers and enzymes, and understanding how to optimize the solid-phase amplification process remains challenging. Here, we demonstrate the concept of solid-phase nucleic acid sequence-based amplification (SP-NASBA) and use it to study the effect of tethering density on amplification efficiency.
View Article and Find Full Text PDFZhonghua Wei Zhong Bing Ji Jiu Yi Xue
October 2017
Objective: To investigate the epidemiological features of out-of-hospital patients with ventricular fibrillation (VF) in Shanghai and to analysis factors associated with outcomes, and to provide evidence for improving the success rate of VF.
Methods: The data of patients with VF admitted to Shanghai Medical Emergency Center from January 2013 to December 2016 were analyzed retrospectively. All the data were recorded including the clinical data, medical service time, return of spontaneous circulation (ROSC) at scene/en route, survival to hospital discharge.