Although numerous studies on polymeric protective films to stabilize lithium (Li)-metal electrodes have been reported, the construction of self-healing polymers that enables the long-term operation of Li-metal batteries (LMBs) at relatively low temperatures has rarely been demonstrated. Herein, a highly stretchable, autonomous self-healable, and ionic-conducting polymer network (SHIPN) is synthesized as an efficient protective film for LMBs. The network backbone, synthesized from copolymerization of poly(ethylene glycol)-mono-methacrylate (PEGMMA) and 2-[[(butylamino)carbonyl]oxy]ethyl acrylate (BCOE), is chemically cross-linked via diisocyanate.
View Article and Find Full Text PDFSilicon (Si) is a promising candidate for high-capacity anode materials owing to its high theoretical capacity (3579 mAh g ), low working voltage, and wide natural abundance, although its huge volume variation during charge/discharge processes always results in a short cycling life. Polymer binders play a vital role in improving the cycling performance of Si-based anodes, although traditional polyvinylidene difluoride cannot fulfil the requirements owing to its weak van der Waals forces with the Si surface. Recently, polymer binders constructed by dynamic bonds have been developed, which are reported to allow high-energy-density electrodes with improved electrochemical performance.
View Article and Find Full Text PDF