Mass Spectrom Rev
January 2023
Ambient mass spectrometry (AMS) has grown as a group of advanced analytical techniques that allow for the direct sampling and ionization of the analytes in different statuses from their native environment without or with minimum sample pretreatments. As a significant category of AMS, plasma-based AMS has gained a lot of attention due to its features that allow rapid, real-time, high-throughput, in vivo, and in situ analysis in various fields, including bioanalysis, pharmaceuticals, forensics, food safety, and mass spectrometry imaging. Tens of new methods have been developed since the introduction of the first plasma-based AMS technique direct analysis in real-time.
View Article and Find Full Text PDFA new ambient ionization technique named laser ablation micro-fabricated glow discharge plasma (LA-MFGDP) was developed for mass spectrometry in this study. This technique used low energy laser for sample ablation and ionized sample aerosol with MFGDP in sequence. The combination of laser ablation and MFGDP exhibited a synergetic effect that significantly improved the performance of MFGDP.
View Article and Find Full Text PDFAmbient desorption/ionization (ADI) sources coupled to mass spectrometer have gained increasing interest in the field of analytical chemistry for its fast and direct analysis of samples. Among many ADI sources, plasma-based ADI sources are an important branch. Despite its extensive use in mass spectrometry analysis, the ionization mechanism of these sources still remain uncertain.
View Article and Find Full Text PDFProton transfer reaction mass spectrometry (PTR-MS) is a revolutionary on-line VOCs monitoring method. In this study, a new microwave plasma-based proton transfer reaction mass spectrometry (MWP-PTR-MS) is developed. The MWP consists of a surfatron type resonator and a cooperative ion extraction device to achieve high efficiency production of hydronium ions.
View Article and Find Full Text PDFAlthough plasma based ambient desorption/ionization (ADI) sources have been widely used for direct analysis of complex samples, mass spectrometric imaging, high throughput screening etc., the ionization mechanism of plasma-based ADI remains a mystery by now. In this report, a targeted study was conducted aiming at a better understanding of the ionization processes of plasma-based ambient desorption ionization source.
View Article and Find Full Text PDF