Publications by authors named "Feiyang Yu"

Compared with other sequence structure polymers, alternating polymers usually have several unique properties, but their properties are more sensitive to changes in structure. By investigating the relationship between the structure and properties of alternating polymer chains, polymers with desired properties can likely be synthesized. In this study, a series of alternating copolymers of 1,1-diphenylethylene (DPE) derivatives and styrene derivatives, which exhibit nontraditional intrinsic luminescence (NTIL), are synthesized using living anionic polymerization.

View Article and Find Full Text PDF

IgA antibodies are critical components of the mucosal immune barrier, providing essential first-line defense against viral infections. In this study, we investigated the impact of antibody class switching on neutralization efficacy by engineering recombinant antibodies of different isotypes (IgA1, IgG1) with identical variable regions from SARS-CoV-2 convalescent patients. A potent, broad-spectrum neutralizing monoclonal antibody CAV-C65 exhibited a ten-fold increase in neutralization potency upon switching from IgG1 to IgA1 monomer.

View Article and Find Full Text PDF
Article Synopsis
  • Metal-oxo clusters have potential as anode materials in lithium-ion batteries due to their structured nanostructures and ability to undergo multielectron redox reactions.
  • A new method involves using carbon dots (CDs) to stabilize a manganese-oxo cluster, preventing aggregation and improving conductivity.
  • The resulting Mn/CDs anode showcases a high capacity of 1643 mAh/g and excellent performance, marking a significant advancement in the development of efficient energy storage materials.
View Article and Find Full Text PDF
Article Synopsis
  • Nipah virus (NiV) poses severe health risks to humans, causing high fatality rates and lacks approved vaccines or antivirals.
  • Researchers developed a ferritin nanoparticle displaying the NiV G head domain (NiV G-ferritin), which showed complete protection in hamsters and stronger immune responses compared to the soluble NiV G protein.
  • The study also identified 27 monoclonal antibodies targeting various sites on the NiV G protein, indicating that NiV G-ferritin is a promising and effective vaccine candidate against Nipah virus.
View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging bunyavirus that causes severe viral hemorrhagic fever and thrombocytopenia syndrome with a fatality rate of up to 30%. No licensed vaccines or therapeutics are currently available for humans. Here, we develop seven monoclonal antibodies (mAbs) against SFTSV surface glycoprotein Gn.

View Article and Find Full Text PDF

The newly identified type VII CRISPR-Cas candidate system uses a CRISPR RNA-guided ribonucleoprotein complex formed by Cas5 and Cas7 proteins to target RNA. However, the RNA cleavage is executed by a dedicated Cas14 nuclease, which is distinct from the effector nucleases of the other CRISPR-Cas systems. Here we report seven cryo-electron microscopy structures of the Cas14-bound interference complex at different functional states.

View Article and Find Full Text PDF

Polyoxometalates (POMs) have been considered one of the most promising anode candidates for lithium-ion batteries (LIBs) in virtue of their high theoretical capacity and reversible multielectron redox properties. However, the poor intrinsic electronic conductivity, low specific surface area, and high solubility in organic electrolytes hinder their widespread applications in LIBs. Herein, a novel hybrid nanomaterial is synthesized by co-assembling POMs and porphyrins (PMo/CoTPyP) through a facile solvothermal method.

View Article and Find Full Text PDF

Coupling distinct enzymatic effectors emerges as an efficient strategy for defense against phage infection in bacterial immune responses, such as the widely studied nuclease and cyclase activities in the type III CRISPR-Cas system. However, concerted enzymatic activities in other bacterial defense systems are poorly understood. Here, we biochemically and structurally characterize a two-component defense system DUF4297-HerA, demonstrating that DUF4297-HerA confers resistance against phage infection by cooperatively cleaving dsDNA and hydrolyzing ATP.

View Article and Find Full Text PDF
Article Synopsis
  • * In this study, LaRuCrO catalysts were synthesized with very low Ru loading using a sol-gel self-combustion method, leading to strong bonding with the support surface through Ru-O bonds.
  • * These catalysts demonstrated high activity and stability in dry reforming of methane, with remarkable conversion rates and minimal carbon deposition over 50 hours of testing.
View Article and Find Full Text PDF

The integration of artificial intelligence (AI) in medical image interpretation requires effective collaboration between clinicians and AI algorithms. Although previous studies demonstrated the potential of AI assistance in improving overall clinician performance, the individual impact on clinicians remains unclear. This large-scale study examined the heterogeneous effects of AI assistance on 140 radiologists across 15 chest X-ray diagnostic tasks and identified predictors of these effects.

View Article and Find Full Text PDF

Artificial intelligence (AI) models for automatic generation of narrative radiology reports from images have the potential to enhance efficiency and reduce the workload of radiologists. However, evaluating the correctness of these reports requires metrics that can capture clinically pertinent differences. In this study, we investigate the alignment between automated metrics and radiologists' scoring of errors in report generation.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) was first reported three years ago, when a group of individuals were infected with the original SARS-CoV-2 strain, based on which vaccines were developed. Here, we develop six human monoclonal antibodies (mAbs) from two elite convalescents in Wuhan and show that these mAbs recognize diverse epitopes on the receptor binding domain (RBD) and can inhibit the infection of SARS-CoV-2 original strain and variants of concern (VOCs) to varying degrees, including Omicron strains XBB and XBB.1.

View Article and Find Full Text PDF

The rapid spread of monkeypox in multiple countries has resulted in a global public health threat and has caused international concerns since May 2022. Poxvirus encoded M2 protein is a member of the poxvirus immune evasion family and plays roles in host immunomodulation via the regulation of innate immune response mediated by the NF-κB pathway and adaptive immune response mediated by B7 ligands. However, the interaction of monkeypox virus (MPXV) M2 with B7 ligands and structural insight into poxviral M2 function have remained elusive.

View Article and Find Full Text PDF

Ruthenium (Ru) electrocatalysts suffer from excessive aggregation during the hydrogen evolution reaction (HER), which hinders their practical application for hydrogen production. Hexagonal boron nitride (h-BN) is a potential carrier that could solve the above problem, but its wide band gap and low conductivity become obstacles. Herein, we provide a new, facile, low-cost, and effective strategy (killing two birds with one stone) to overcome the above issues.

View Article and Find Full Text PDF

Aneuploidy is a hallmark of aggressive malignancies associated with therapeutic resistance and poor survival. Measuring aneuploidy requires expensive specialized techniques that are not clinically applicable. Deep learning analysis of routine histopathology slides has revealed associations with genetic mutations.

View Article and Find Full Text PDF

Noble metal nanoparticles (NMNPs) with excellent catalytic activity and stability play an important role in the field of environmental governance. A uniform distribution and a strong binding force with the carriers of the noble metal nanoparticles are important, but avoidance of the use of additional reducing agents is a promising direction of research. Herein, 2D ultrathin surfactant-encapsulating polyoxometalate (SEP) nanosheets constructed by the self-assembly of dodecyldimethylammonium bromide (DODA) and molybdophosphate (H3PMo12O40, PMo12) are designed to be versatile carriers for Ag nanoparticles.

View Article and Find Full Text PDF

The oxidized platinum (Pt) can exhibit better electrocatalytic activity than metallic Pt in the hydrogen evolution reaction (HER), which has aroused great interest in exploring the role of oxygen in Pt-based catalysts. Herein, we select two structurally well-defined polyoxometalates Na[HPtWO] (PtWO) and NaK[Pt(WO)] (Pt(WO)) as the platinum oxide model to investigate the HER performance. Electrocatalytic experiments show the mass activities of PtWO/C and Pt(WO)/C are 20.

View Article and Find Full Text PDF

Enhancing the oral bioavailability of peptides has received a lot of attention for decades but remains challenging, partly due to low intestinal membrane permeability. Combining a permeation enhancer (PE) with unidirectionally releasing microcontainers (MCs) has previously been shown to increase insulin permeation across Caco-2 cell monolayers. In the present work, this setup was further employed to compare three common PEs-sodium caprate (C), sodium dodecyl sulfate (SDS), and lauroyl carnitine.

View Article and Find Full Text PDF

Molybdenum carbides are considered as one type of privileged noble-metal-free electrocatalysts for hydrogen evolution reactions (HER) due to their d-band electron structure, which is similar to Pt. Especially, the electronic structure of such materials can be further adjusted by elemental doping to improve their electrocatalytic activity. Herein, we selected the Anderson-type polyoxometalates (POMs) (NH4)n[TMMo6O24H6]·5H2O (TM = Ni2+, Co2+, n = 4; TM = Fe3+, Cr3+, n = 3) as precursors to prepare new transition-metal-doped Mo2C materials.

View Article and Find Full Text PDF

The hydrogen evolution reaction (HER) produces clean hydrogen through an electrochemical process. However, new nonprecious-metal electrocatalysts for the HER are required to reduce the consumption of energy. Herein, we report a new Co P/WC nano-heterojunction that consists of Co P and WC composite phases coated with a few-layer N-doped graphitic carbon shells (Co P/WC@NC).

View Article and Find Full Text PDF
Article Synopsis
  • - This paper introduces a new two-dimensional stochastic method called the spatial-hidden Markov model (SHMM) for analyzing histological images, enhancing traditional hidden Markov models (HMM) by capturing complex biological features.
  • - SHMM uses a second-order neighborhood system and defines 'past' observations based on a row-wise scan, focusing on two main problems: decoding best states and estimating image generation probabilities.
  • - Experiments conducted on a database of 200 medical images show that SHMM outperforms existing methods, including HMM and state-of-the-art approaches, thereby addressing previous limitations and improving results significantly.
View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5dthh3udn7o25uk53h4mg18kgsg9gshl): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once