Publications by authors named "Feiyang Gou"

As primary flavonoids extracted from citrus fruits, hesperidin has been attracting attention widely for its capacity to act as antioxidants that are able to scavenge free radicals and reactive oxygen species (ROS). Many factors have made oxidative stress a risk factor for the occurrence of intestinal barrier injury, which is a serious health threat to human beings. However, little data are available regarding the underlying mechanism of hesperidin alleviating intestinal injury under oxidative stress.

View Article and Find Full Text PDF

A proper dietary electrolyte balance (dEB) is essential to ensure optimal growth performance of piglets. In the low-protein diet, this balance may be affected by the reduction of soybean meal and the inclusion of high levels of synthetic amino acids. The objective of this experiment was to evaluate the optimal dEB of low-protein diets and its impact on the growth performance of piglets.

View Article and Find Full Text PDF

Deoxynivalenol (DON) pollution is prevalent in crops, and can induce oxidative stress and intestinal injury. Hesperidin is one of the major flavonoids in citrus fruits that has various biological activities such as antioxidant and anti-inflammatory activities. However, whether hesperidin could alleviate DON-induced intestinal injury and the mechanism remain unclear.

View Article and Find Full Text PDF

Reducing the dietary crude protein (CP) could effectively reduce pressure on protein ingredient supplies. However, few data have been reported about the extent to which CP can be reduced and whether limiting the use of soybean meal leads to electrolyte imbalance. In this experiment, using the low protein (LP) diet [2% lower than NRC (2012)], seventy-two piglets (35 days old) were randomly divided into 2 groups with 6 replicates of 6 piglets each: CON group (CP = 18.

View Article and Find Full Text PDF

Many factors induced by environmental toxicants have made oxidative stress a risk factor for the intestinal barrier injury and growth restriction, which is serious health threat for human and livestock and induces significant economic loss. It is well-known that diquat-induced oxidative stress is implicated in the intestinal barrier injury. Although some studies have shown that mitochondria are the primary target organelle of diquat, the underlying mechanism remains incompletely understood.

View Article and Find Full Text PDF

Deoxynivalenol (DON) contamination is widespread in crops and could easily cause intestinal injury, which brings hazards to animals. Mitochondria are considered as an important target of DON, nevertheless, the mechanism is still unclear. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) have gained arousing interest and are recognized as critical signaling hubs that control calcium signaling transduction between ER and mitochondria.

View Article and Find Full Text PDF

Recent research has emphasized the significance of investigating the interplay between organelles, with endoplasmic reticulum mitochondria contact sites (ERMCSs) being recognized as critical signaling hubs between organelles. The objective of the current study was to assess the impact of deoxynivalenol (DON) on jejunal mitochondria, ER, and ERMCSs. Twelve piglets (35 d, 10.

View Article and Find Full Text PDF