Metal sulfides with the nature of low electronegativity and high electrochemical activity are potentially considered effective electrode materials for supercapacitors. Meanwhile, hierarchical porous carbon (HPC) materials derived from eco-friendly enzymatic hydrolysis lignin are the ideal matrix for holding nanoparticles (NP) that allows the overall NP/HPC composite to achieve outstanding electrochemical performance. In this study, NiCoS nanoparticles were in-situ synthesized on the inner surface of 3D HPC that derived from enzymatic hydrolysis lignin with a simple one-step solvothermal method, thus forming a high-performance composite electrode material for supercapacitor applications.
View Article and Find Full Text PDFOxidative stress is associated with the pathogenesis of ischemic stroke (±)-5-bromo-2-(5-fluoro-1-hydroxyamyl) benzoate (BFB) is a novel compound modified by dl-3-n-butylphthalide (NBP). Here, we hypothesized that BFB may protect the PC12 cells against HO-induced oxidative stress injury through activation of the Nrf2 pathway. We measured the cell viability and levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), glutathione (GSH), and reactive oxygen species (ROS) to determine the construction of the HO-induced models of oxidative stress in PC12 cells.
View Article and Find Full Text PDFThe development of advanced energy storage systems, such as rechargeable batteries and supercapacitors (SCs), is one of the great challenges related to energy demand with the rapid development of world economy. Herein, a three-dimensional hierarchical porous lignin-derived carbon/WO (HPC/WO) was prepared by carbonization and solvothermal process. This electrode material for supercapacitor can be operated at a wide voltage window range of -0.
View Article and Find Full Text PDFThree-dimensional hierarchical porous carbon is prepared by utilizing enzymatic hydrolysis lignin as a carbon source via hydrothermal carbonization and activation. The complicated operational parameters including temperature, time, concentration and pH in the hydrothermal carbonization are systemically investigated. We employed the hydrochar as electrode for supercapacitors.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
February 2015
To study the pharmacokinetic characteristics and absolute bioavailability of α-asarone through dry powder inhalation in rats, and compare with that through oral administration and intravenous injection. A HPLC method was established for the determination of α-asarone in rat plasma to detect the changes in plasma concentrations of α-asarone through dry powder inhalation (20 mg · kg(-1)), oral administration (80 mg · kg(-1)) and intravenous injection (20 mg · kg(-1)) in rats. DAS 2.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2014
Relatively uniform-sized nanoparticles made of poly (lactic-co-glycolic acid) (PLGA) were prepared by premix membrane emulsification method. After the drug loading property was completed, the dynamic tissue distribution of nanoparticles was recorded. With the average particle size and span as indexes, membrane pore size, number of passing membrane times, membrane pressure, volume ratio of oil-water phase and the concentration of poly(vinyl alcohol) (PVA) in external water phase were investigated by single factor test, the optimum preparation technology of blank PLGA nanlparticles was as following: pore size of SPG membrane was 1 μm, membrane pressure was 1.
View Article and Find Full Text PDFFor effective inhalable dry-powder drug delivery, tetrandrine-PLGA (polylactic-co-glycolic acid) nanocomposite particles have been developed to overcome the disadvantages of nanoparticles and microparticles. The primary nanoparticles were prepared by using premix membrane emulsification method. To prepare second particles, they were spray dried.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
December 2013
Huang-Lian-Jie-Du-Tang (HLJDT), a classical Chinese prescription, has been clinically employed to treat cerebral ischemia for thousands of years. Geniposide is the major active ingredient in HLJDT. The aim is to investigate the comparative evaluations on pharmacokinetics of geniposide in MCAO rats in pure geniposide, geniposide : berberine, and geniposide : berberine : baicalin.
View Article and Find Full Text PDF