Publications by authors named "Feiya Fu"

Article Synopsis
  • The pandemic has emphasized the need for textiles that can quickly inactivate pathogens to safeguard public health, particularly for cotton fabric.
  • A new cotton fabric, Co-CMC@Cu, was developed by treating cotton with carboxymethyl chitosan and loading it with copper ions, enabling rapid and effective pathogen inactivation with minimal copper usage.
  • This innovative fabric demonstrated impressive bacterial reduction rates of over 94% within 10 minutes and maintained high efficacy after 150 washes, making it a promising option for antiviral and antimicrobial applications during health crises.
View Article and Find Full Text PDF

Emerging pathogens present a significant societal threat, and biological protection textiles are expected to play a pivotal role in controlling their spread. However, incorporating highly effective pathogen transmission-blocking abilities into textiles while ensuring their large-scale production remains challenging. This work has successfully developed a hierarchically structured coating for cotton fibers, which exhibits enhanced antiviral and antibacterial functionalities compared to existing phenolic coating methods.

View Article and Find Full Text PDF

The agricultural industry produces a substantial volume of rice straw (RS) annually, highlighting the importance of recycling RS for sustainable materials. However, the poor interfacial compatibility between RS and polymers often leads to drawbacks in their composites, such as water-swelling and limited tensile strength. Here, we propose a novel approach using Ca(OH) that offers several distinct advantages: enhancement of interfacial compatibility, elimination of the need for water washing, and formation of calcified hybrid particles on fiber surfaces by capturing CO from the atmosphere.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a way to attach special antibacterial proteins onto silk fabric using a natural, friendly material made from sugar.
  • They used a simple process that helped the proteins stick to the silk without ruining its look or strength.
  • This new method made the silk not only fight germs better but also kept working even after being washed many times, showing it's both effective and durable!
View Article and Find Full Text PDF

Integration of hydrophobic and antibacterial functionalities into polyester-cotton blended (PTCO) textiles has attracted more attention but remains a challenge. Here, a Janus fabric with antibacterial effect, hydrophobicity, and enhanced moisture-permeability is fabricated using a "mist polymerization" approach. The PET fibers in the PTCO fabric are amino-functionalized through ammonolysis reactions of PET molecules with HDA, and mist treatments of poly lauryl methacrylate (PLMA) and poly(DMC-co-MA) (PDM) are applied on the two side surfaces of the PTCO-HDA fabric, respectively.

View Article and Find Full Text PDF

Degumming is the most critical step for the silk textile industry and the process of silk-based advanced materials. However, current common degumming techniques are largely limited because of insufficient efficiency, obvious hydrolysis damage and difficulty in long-term storage. Here, deep eutectic solvent (DES) constituted of choline chloride (ChCl) and urea was explored to Bombyx mori silk fibers degumming without combining any further treatment.

View Article and Find Full Text PDF

Owing to their small fiber diameter (10-15 μm), silk fabrics are always thin (32-90 g m). Therefore, construction of the Janus surfaces of silk fabrics that possess excellent multifunctionality remains a formidable challenge. Herein, first, silk fabrics were grafted using glycidyltrimethylammonium chloride to form a superhydrophilic surface (G-side).

View Article and Find Full Text PDF

Natural cotton fibers have attached considerable attention due to their excellent wearing comfort, breathability and warmth. However, it remains a challenge to devise a scalable and facile strategy to retrofit natural cotton fibers. Here, the cotton fiber surface was oxidized by sodium periodate with a mist process, then [2-(methacryloyloxy) ethyl] trimethylammonium chloride (DMC) was co-polymerized with hydroxyethyl acrylate (HA) to obtain an antibacterial cationic polymer (DMC-co-HA).

View Article and Find Full Text PDF

The outbreak of COVID-19 provided a warning sign for society worldwide: that is, we urgently need to explore effective strategies for combating unpredictable viral pandemics. Protective textiles such as surgery masks have played an important role in the mitigation of the COVID-19 pandemic, while revealing serious challenges in terms of supply, cross-infection risk, and environmental pollution. In this context, textiles with an antivirus functionality have attracted increasing attention, and many innovative proposals with exciting commercial possibilities have been reported over the past three years.

View Article and Find Full Text PDF

Most amino acid molecules have good water solubility and are rich in functional groups, which makes them a promising derivatizing agent for cellulose. However, self-condensation of amino acids and low reaction efficiency always happen during esterification. Here, amino acid hydrochloride ([AA]Cl) is selected as raw material to synthesize cellulose amino acid ester (CAE).

View Article and Find Full Text PDF

The construction of an interconnected nanofiller network is critical for the preparation of highly effective thermal management composites, though it remains a challenge to eliminate the anisotropic thermal conductivity of the nanofiller-induced defective interfacial heat-flow efficiency. In this work, a facile and novel approach is proposed to optimize phonon transport by building a salt template-assisted three-dimensional (3D) carbonization nanohybrid network in an epoxy system. The advantage of the salt template relied on green and scalable merits to construct a 3D nanofiller network and supporting abundant holes for the introduction of a polymer matrix after washing.

View Article and Find Full Text PDF

Introducing functional metal nanoparticles (NPs) into flexible substrate is being increasingly attempted to expand their application. Here, we extend the synthesis of cellulose to its unmodified dope achieving freestanding nanocomposite decorated with bimetallic Ag-Au NPs through the one pot reaction. In the procedure, cellulose chain not only acts as a reducing agent but also a biocompatible support for NPs with a mean size of 7.

View Article and Find Full Text PDF

Ring-opening polymerization of bifunctional benzoxazine has long been thought to produce a permanent network structure without reprocessing ability. Here, we demonstrate that surprising healability can be achieved by a controlled polymerization of an -blocked bifunctional benzoxazine poly(C-hda). The cured resin possesses a cross-linked structure, but can be deformed, remolded from crushed pieces or healed from mechanical damage.

View Article and Find Full Text PDF

In this article, durable antimicrobial cotton fabric was prepared by a one-pot modification process using a colloidal solution of silver nanoparticles (Ag NPs) stabilized by carboxymethyl chitosan (CMC). Due to coordination bonds between the amine groups of CMC and the Ag NPs and the ester bonds present between the carboxyl groups of CMC and the hydroxyl groups of cellulose, the Ag NPs were tightly immobilized onto the cotton fiber surface. As a result, the Ag NPs that were adhered on the cotton fabrics have uniform dispersion and small size, ranging from 10 nm to 80 nm.

View Article and Find Full Text PDF

Cellulose based Ag-functionalized ZnO nanocomposite (AZC) films were prepared using a green and easy scale-up strategy. Firstly, ZnO embedded cellulose (ZC) nanocomposite was synthesized from a cellulose-NaOH/zincate/urea solution through a biomimetic approach. Secondly, Ag nanoparticles (NPs) with a mean diameter of 53.

View Article and Find Full Text PDF

A self-healing polybenzoxazine is synthesized solely based on dynamic ester bonds. For this purpose, an anhydride (succinic anhydride) was added into bisphenol F derived benzoxazine monomer before thermocuring. Owing to the transesterification of newly formed ester bonds, the thermoset network behaves as a thermoplastic at 140 °C in the presence of Zn (Ac), and shows self-healing properties even after multiple damage-healing cycles.

View Article and Find Full Text PDF

Silver nanoparticles (Ag NPs) have outstanding antimicrobial effects, but their weak adhesive force onto cotton fiber surfaces often causes undesired silver loss from antibacterial fabrics, diminishing antibacterial durability, and even leading to environmental and health risks. To improve adhesion of the Ag NPs, various strategies have been tried, but achieving long-term antibacterial effectiveness still remains challenging. Here, l-methionine is proposed as a binder reagent because it has low toxicity towards mammalian cells and has a methyl group to enhance its coordination ability.

View Article and Find Full Text PDF

To obtain durably antimicrobial cotton fabric, carboxymethyl chitosan (CMC) was covalently linked to cotton fibers via an esterification with the cellulose hydroxyl groups, and the silver nanoparticles (Ag NPs) were adhered to the fiber surface by the coordination bonds with the amino groups of CMC. The finished cotton fabrics have an excellent antibacterial function and outstanding laundering durability. Even after 50 consecutive laundering tests, the modified cotton fabrics still show satisfactory bacterial reduction rates (BR) against both S.

View Article and Find Full Text PDF

Carboxymethyl chitosan (CMCTS) and silver nanoparticles (Ag NPs) were successfully linked onto a cotton fabric surface through a simple mist modification process. The CMCTS binder was covalently linked to the cotton fabric via esterification and the Ag NPs were tightly adhered to the fiber surface by coordination bonds with the amine groups of CMCTS. As a result, the coating of Ag NPs on the cotton fabric showed excellent antibacterial properties and laundering durability.

View Article and Find Full Text PDF

A facile method for the fabrication of inorganic hollow materials from cuprammonium cellulose composite filaments based on fast pyrolysis has been developed. Unlike Ostwald ripening, approaches based on the Kirkendall effect, and other template methods, this process yielded hollow materials within 100 s. The heterogeneous structure of the cellulose composite fibers and the gradient distribution of the metal oxides are the main reasons for the formation of the hollow structure.

View Article and Find Full Text PDF

Cellulose based ZnO nanocomposite (RCZ) films were prepared from cellulose carbamate-NaOH/ZnO solutions through one-step coagulation in Na2SO4 aqueous solutions. The structure and properties of RCZ films were characterized using XRD, FTIR, XPS, SEM, TEM, TG, tensile testing, and antibacterial activity tests. The content of ZnO in RCZ films was obtained in the range of 2.

View Article and Find Full Text PDF

We present a polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure. The polarization-insensitive characteristic originates from the combined effect of the TM-polarized high-reflectivity high-index-contrast subwavelength grating and the TE-polarized metallic (Au) subwavelength grating with the addition of the insulator layer. The overlapped high reflectivity (>99.

View Article and Find Full Text PDF

A lateral cavity photonic crystal (PhC) surface-emitting laser is realized on a commercial epitaxial waveguide wafer without a distributed Bragg reflector first. Energy is coupled from the lateral resonance to surface-emitting light through the Γ band edge of the PhC with a square lattice. Electrically driven 1553.

View Article and Find Full Text PDF

By out-of-particle surface plasmon (SP) excitation in the near infrared range, the influences of key parameters on the basic optical properties of the Au crescent are qualitatively studied from the mode dispersion. Based on the coherent control of SP wave, a crescent pair sensor with the intensified extracted signal and the controllability of sensing is proposed. In addition, the crescent half replaced by Ag functioning as a position detector is also proposed.

View Article and Find Full Text PDF