Tissue engineering for penile corpora cavernosa defects requires microvascular system reconstruction.GelMA hydrogels show promise for tissue regeneration. However, using stem cells faces challenges such as immune rejection, limited proliferation and differentiation, and biosafety concerns.
View Article and Find Full Text PDFA profile of the analgesic tramadol hydrochloride ((1RS,2RS)-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexanol hydrochloride) is provided in this chapter and includes a summary of the physical characteristics known for this drug substance (e.g., UV/vis, IR, NMR, and mass spectra).
View Article and Find Full Text PDFParoxetine hydrochloride (3S-trans)-3-[(1,3-benzodioxol-5-yloxy)methyl]-4-(4-fluorophenyl)-piperidine hydrochloride (or (-)-(3S,4R)-(4-(p-fluorophenyl)-3-[[3,4-(methylenedioxy)-phenoxy]methyl]piperidine hydrochloride), a phenylpiperidine derivative, is a selective serotonin reuptake inhibitor. Paroxetine is indicated for the treatment of depression, generalized anxiety disorder, obsessive-compulsive disorder, panic disorder, posttraumatic stress disorder, and social anxiety disorder. The physicochemical properties, spectroscopic data (1D and 2D NMR, UV, FT-IR, MS, PXRD), stability, methods of preparation and chromatographic methods of analysis of pharmaceutical, and biological samples of paroxetine are documented in this review.
View Article and Find Full Text PDFWe employed ultrasonic velocimetry, high-precision densimetry, circular dichroism and fluorescence spectroscopy, and isothermal titration calorimetry to characterize the binding of Hoechst 33258 to the d(CGCGAATTCGCG)(2) oligomeric duplex at 25 degrees C. We used this experimental combination to determine the full thermodynamic profile for the binding of Hoechst 33258 to the DNA. Specifically, we report changes in binding free energy, enthalpy, entropy, volume, and adiabatic compressibility accompanying the binding.
View Article and Find Full Text PDFWe use high precision ultrasonic velocimetric and densimetric techniques to determine at 25 degrees C the changes in volume, deltaV, and adiabatic compressibility, deltaK(S), that accompany the binding of ethidium to the poly(rA)poly(rU), poly(dAdT)poly(dAdT), poly(dGdC)poly(dGdC), and poly(dIdC)poly(dIdC) duplexes, as well as to the poly(rU)poly(rA)poly(rU) triplex. The binding of ethidium to each of the duplexes and the triplex is accompanied by negative changes in volume, deltaV, and adiabatic compressibility, deltaK(S). We discuss the basis for relating macroscopic and microscopic properties, particularly, emphasizing how measured changes in volume and compressibility can be quantitatively interpreted in terms of the differential hydration properties of DNA and RNA structures in their ligand-free and ligand-bound states.
View Article and Find Full Text PDF