Publications by authors named "Feixue Fu"

Article Synopsis
  • Ocean warming and acidification may affect diatoms like Pseudo-nitzschia multiseries, but the long-term impacts are not well understood.
  • The study explored how this diatom responds to changes in temperature and CO2 over at least 251 generations, finding that higher temperatures reduced growth while increased CO2 levels promoted it.
  • Results indicated that temperature is the primary factor affecting the diatom's responses, and long-term acclimation led to notable adjustments in gene expression related to stress and cellular management, suggesting that short-term experiments can help predict long-term outcomes.
View Article and Find Full Text PDF

Unlabelled: Phosphorus concentration on the surface of seawater varies greatly with different environments, especially in coastal. The molecular mechanism by which cyanobacteria adapt to fluctuating phosphorus bioavailability is still unclear. In this study, transcriptomes and gene knockouts were used to investigate the adaptive molecular mechanism of a model coastal cyanobacterium sp.

View Article and Find Full Text PDF

Seaweed cultivation can inhibit the occurrence of red tides. However, how seaweed aquaculture interactions with harmful algal blooms will be affected by the increasing occurrence and intensity of marine heatwaves (MHWs) is unknown. In this study, we run both monoculture and coculture systems to investigate the effects of a simulated heatwave on the competition of the economically important macroalga Gracilariopsis lemaneiformis against the harmful bloom diatom Skeletonema costatum.

View Article and Find Full Text PDF

In many oceanic regions, anthropogenic warming will coincide with iron (Fe) limitation. Interactive effects between warming and Fe limitation on phytoplankton physiology and biochemical function are likely, as temperature and Fe availability affect many of the same essential cellular pathways. However, we lack a clear understanding of how globally significant phytoplankton such as the picocyanobacteria will respond to these co-occurring stressors, and what underlying molecular mechanisms will drive this response.

View Article and Find Full Text PDF

The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacterium isolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures.

View Article and Find Full Text PDF

Along the west coast of the United States, highly toxic Pseudo-nitzschia blooms have been associated with two contrasting regional phenomena: seasonal upwelling and marine heatwaves. While upwelling delivers cool water rich in pCO and an abundance of macronutrients to the upper water column, marine heatwaves instead lead to warmer surface waters, low pCO, and reduced nutrient availability. Understanding Pseudo-nitzschia dynamics under these two conditions is important for bloom forecasting and coastal management, yet the mechanisms driving toxic bloom formation during contrasting upwelling vs.

View Article and Find Full Text PDF

The colony-forming cyanobacteria Trichodesmium spp. are considered one of the most important nitrogen-fixing genera in the warm, low nutrient ocean. Despite this central biogeochemical role, many questions about their evolution, physiology, and trophic interactions remain unanswered.

View Article and Find Full Text PDF

Ocean warming (OW) and acidification (OA) are recognized as two major climatic conditions influencing phytoplankton growth and nutritional or toxin content. However, there is limited knowledge on the responses of harmful algal bloom species that produce toxins. Here, the study provides quantitative and mechanistic understanding of the acclimation and adaptation responses of the domoic acid (DA) producing diatom Pseudo-nitzschia multiseries to rising temperature and pCO using both a one-year in situ bulk culture experiment, and an 800-day laboratory acclimation experiment.

View Article and Find Full Text PDF

In the nitrogen-limited subtropical gyres, diazotrophic cyanobacteria, including Crocosphaera, provide an essential ecosystem service by converting dinitrogen (N) gas into ammonia to support primary production in these oligotrophic regimes. Natural gradients of phosphorus (P) and iron (Fe) availability in the low-latitude oceans constrain the biogeography and activity of diazotrophs with important implications for marine biogeochemical cycling. Much remains unknown regarding Crocosphaera's physiological and molecular responses to multiple nutrient limitations.

View Article and Find Full Text PDF

Despite their relatively high thermal optima (T ), tropical taxa may be particularly vulnerable to a rising baseline and increased temperature variation because they live in relatively stable temperatures closer to their T . We examined how microbial eukaryotes with differing thermal histories responded to temperature fluctuations of different amplitudes (0 control, ±2, ±4°C) around mean temperatures below or above their T . Cosmopolitan dinoflagellates were selected based on their distinct thermal traits and included two species of the same genus (tropical and temperate Coolia spp.

View Article and Find Full Text PDF

The globally dominant N -fixing cyanobacteria Trichodesmium and Crocosphaera provide vital nitrogen supplies to subtropical and tropical oceans, but little is known about how they will be affected by long-term ocean warming. We tested their thermal responses using experimental evolution methods during 2 years of selection at optimal (28°C), supra-optimal (32°C) and suboptimal (22°C) temperatures. After several hundred generations under thermal selection, changes in growth parameters, as well as N and C fixation rates, suggested that Trichodesmium did not adapt to the three selection temperature regimes during the 2-year evolution experiment, but could instead rapidly and reversibly acclimate to temperature shifts from 20°C to 34°C.

View Article and Find Full Text PDF

Ocean microbial communities are important contributors to the global biogeochemical reactions that sustain life on Earth. The factors controlling these communities are being increasingly explored using metatranscriptomic and metaproteomic environmental biomarkers. Using published proteomes and transcriptomes from the abundant colony-forming cyanobacterium (strain IMS101) grown under varying Fe and/or P limitation in low and high CO, we observed robust correlations of stress-induced proteins and RNAs (i.

View Article and Find Full Text PDF

Arsenic pollution is a widespread threat to marine life, but the ongoing rise pCO levels is predicted to decrease bio-toxicity of arsenic. However, the effects of arsenic toxicity on marine primary producers under elevated pCO are not well characterized. Here, we studied the effects of arsenic toxicity in three globally distributed diatom species (Phaeodactylum tricornutum, Thalassiosira pseudonana, and Chaetoceros mulleri) after short-term acclimation (ST, 30 days), medium-term exposure (MT, 750 days), and long-term (LT, 1460 days) selection under ambient (400 µatm) and elevated (1000 and 2000 µatm) pCO.

View Article and Find Full Text PDF

A major challenge in modern biology is understanding how the effects of short-term biological responses influence long-term evolutionary adaptation, defined as a genetically determined increase in fitness to novel environments. This is particularly important in globally important microbes experiencing rapid global change, due to their influence on food webs, biogeochemical cycles, and climate. Epigenetic modifications like methylation have been demonstrated to influence short-term plastic responses, which ultimately impact long-term adaptive responses to environmental change.

View Article and Find Full Text PDF

Throughout the open ocean, a minimum in dissolved iron concentration (dFe) overlaps with the deep chlorophyll maximum (DCM), which marks the lower limit of the euphotic zone. Maximizing light capture in these dim waters is expected to require upregulation of Fe-bearing photosystems, further depleting dFe and possibly leading to co-limitation by both iron and light. However, this effect has not been quantified for important phytoplankton groups like Prochlorococcus, which contributes most of the productivity in the oligotrophic DCM.

View Article and Find Full Text PDF

Average sea surface temperatures are expected to rise 4° this century, and marine phytoplankton and bacterial community composition, biogeochemical rates, and trophic interactions are all expected to change in a future warmer ocean. Thermal experiments typically use constant temperatures; however, weather and hydrography cause marine temperatures to fluctuate on diel cycles and over multiple days. We incubated natural communities of phytoplankton collected from California coastal waters during spring, summer, and fall under present-day and future mean temperatures, using thermal treatments that were either constant or fluctuated on a 48 h cycle.

View Article and Find Full Text PDF
Article Synopsis
  • Future ocean temperatures are expected to rise and fluctuate more, which will interact with reduced nutrient supplies like phosphorus (P).
  • The study focused on a specific cyanobacterium (GBRTRLI101) and examined how different temperature treatments affected its growth, particularly under varying levels of phosphorus availability.
  • Results indicated that while constant temperatures generally supported better growth and physiological performance in P-rich conditions, the cyanobacterium showed increased phosphorus use efficiency in warmer, P-limited conditions, suggesting potential adaptability to future environmental stressors.
View Article and Find Full Text PDF
Article Synopsis
  • - Cyanobacteria play a crucial role in nutrient cycling globally, particularly concerning their high need for iron (Fe), which is usually found in very low levels in aquatic environments.
  • - Researchers identified specific proteins and transporters that help these organisms acquire Fe, revealing that while some transporters are vital for taking up iron from organic sources, they still have alternative methods for acquiring inorganic Fe.
  • - Mutations in certain genes related to Fe uptake pathways showed varying effects on the ability of cyanobacteria to survive and acquire iron, highlighting their evolutionary adaptations to low-Fe conditions in aquatic ecosystems.
View Article and Find Full Text PDF

Only select prokaryotes can biosynthesize vitamin B (i.e., cobalamins), but these organic co-enzymes are required by all microbial life and can be vanishingly scarce across extensive ocean biomes.

View Article and Find Full Text PDF

Distribution of diazotrophs and their nitrogen fixation activity were investigated in the northern South China Sea (nSCS) and the Kuroshio from July 16th to September 1st, 2009. N fixation activities in whole seawater and <10 μm fraction at the surface were measured by acetylene reduction assay. Higher activities were observed at the East China Sea (ECS) Kuroshio and the nSCS shelf.

View Article and Find Full Text PDF

Nitrogen-fixing (N) cyanobacteria provide bioavailable nitrogen to vast ocean regions but are in turn limited by iron (Fe) and/or phosphorus (P), which may force them to employ alternative nitrogen acquisition strategies. The adaptive responses of nitrogen fixers to global-change drivers under nutrient-limited conditions could profoundly alter the current ocean nitrogen and carbon cycles. Here, we show that the globally important N fixer fundamentally shifts nitrogen metabolism toward organic-nitrogen scavenging following long-term high-CO adaptation under iron and/or phosphorus (co)limitation.

View Article and Find Full Text PDF

is a globally distributed cyanobacterium whose nitrogen-fixing capability fuels primary production in warm oligotrophic oceans. Like many photoautotrophs, serves as a host to various other microorganisms, yet little is known about how this associated community modulates fluxes of environmentally relevant chemical species into and out of the supraorganismal structure. Here, we utilized metatranscriptomics to examine gene expression activities of microbial communities associated with (strain IMS101) using laboratory-maintained enrichment cultures that have previously been shown to harbor microbial communities similar to those of natural populations.

View Article and Find Full Text PDF

Cytosine methylation has been shown to regulate essential cellular processes and impact biological adaptation. Despite its evolutionary importance, only a handful of bacterial, genome-wide cytosine studies have been conducted, with none for marine bacteria. Here, we examine the genome-wide, C -Methyl-cytosine (m5C) methylome and its correlation to global transcription in the marine nitrogen-fixing cyanobacterium Trichodesmium.

View Article and Find Full Text PDF