Cell density is important for tumour metastasis, treatment and prognosis. Characterizing changes in cell density for electrochemotherapy (ECT) can reveal sub-populations in pathological states, and adjust treatment program. In this work, a simple and convenient microfluidic platform was developed to study the effect cell density on ECT by integrating the improved cell gradient generator, cell culture chamber and indium tin oxide interdigital electrodes.
View Article and Find Full Text PDFA convenient, facile, and mask-free approach assay was developed for single-cell study by using a combination of inkjet printing technology and polydimethylsiloxane (PDMS) microchip-assisted processing. The inkjet printing technology resulted in 91% of the single-cell occupancy by individually spraying MCF-7 cells on a hydrophobic substrate and enabled the control over the number of cells with precision by strictly optimizing the printing parameters. Further, the microchip containing a cell chamber and straight channels was attached to the glass slide to explore the real-time performance of the cells.
View Article and Find Full Text PDFIn this study, a convenient assay method has been developed based on labeled functional nucleic acids (H-DNA) and a competitive fluorescent lateral flow immunoassay (CF-LFI) for ampicillin (AMP) detection. Herein, we designed the tunable AMP probes for AMP detection based on the AMP aptamer, and the secondary DNA fragment. The probes can generate tunable signals on the test line (T line) and control line (C line) according to the concentration of AMP.
View Article and Find Full Text PDFResistance to apoptosis is an characteristic of cancer cells that serves a critical function in tumor development and represents a target for antitumor therapy. Isoimperatorin (ISOIM), a coumarin compound, exhibits antitumor functions in multiple types of tumor cells. However, its antitumor effects and molecular mechanisms with respect to gastric cancer have not been elucidated.
View Article and Find Full Text PDFPrunus cerasifera has a rich resource and a weak utilization rate and its biological functions have been investigated. We found that the contents of total phenol (TP) in leaves and branches of Prunus cerasifera were 117.8 ± 8.
View Article and Find Full Text PDF