Microstructural parameters are essential in tumor research, aiding in the understanding tumor pathogenesis, grading, and therapeutic efficacy. The imaging microstructural parameters using limited spectrally edited diffusion (IMPULSED) model is the most widely used MR cell size imaging technique, demonstrating success in measuring microstructural parameters of solid tumors in vivo. However, its clinical application is limited by the longer scan times required for both pulsed gradient spin-echo (PGSE) and multiple oscillating gradient spin-echo (OGSE) acquisitions across a range of b-values, which can be burdensome for patients and disrupt clinical workflows.
View Article and Find Full Text PDFBackground: Emerging evidence suggests that there are morphological and physiological changes to the vastus lateralis after an anterior cruciate ligament (ACL) tear. However, it is unclear whether these alterations are limited to just the vastus lateralis or are more representative of widespread changes across the thigh musculature and/or if these changes precede reconstruction. The purpose of this study was to determine T1ρ relaxation time, a measure of extracellular matrix organization in muscle, and physiological cross-sectional area (PCSA) for muscles of the quadriceps and hamstrings of the ACL-deficient and contralateral limbs soon after ACL injury.
View Article and Find Full Text PDFPurpose: The purpose of this study was to investigate microstructural changes in the aging adult prostate by comparing the effects of varying diffusion times using diffusion MRI, and to provide an age-related benchmark for future prostate cancer studies.
Methods: The prostates of normal male volunteers (n = 70, 19-69 years) were scanned at 3 T with an oscillating gradient spin echo (OGSE: 6 ms), pulsed gradient spin echo (PGSE: 40 ms) and pulsed gradient stimulated echo (PGSTE: 100 ms), and anatomical T-weighted image. Volume and mean diffusivity (MD) were measured in the peripheral (PZ) and transition zones (TZ), which were assessed versus age.
Diffusion tensor imaging (DTI) provides insight into the skeletal muscle microstructure and can be acquired using a stimulated echo acquisition mode (STEAM)-based approach to quantify time-dependent tissue diffusion. This study examined diffusion metrics and signal-to-noise ratio (SNR) in the supraspinatus muscle obtained with a STEAM-DTI sequence with different diffusion encoding times (Δ) and compared them to measures from a spin echo (SE) sequence. Ten healthy subjects (mean age 31.
View Article and Find Full Text PDFIn neuroimaging, there is no equivalent alternative to magnetic resonance imaging (MRI). However, image acquisitions are generally time-consuming, which may limit utilization in some cases, e.g.
View Article and Find Full Text PDFIntroduction/aims: Muscle diffusion tensor imaging has not yet been explored in facioscapulohumeral muscular dystrophy (FSHD). We assessed diffusivity parameters in FSHD subjects compared with healthy controls (HCs), with regard to their ability to precede any fat replacement or edema.
Methods: Fat fraction (FF), water T2 (wT2), mean, radial, axial diffusivity (MD, RD, AD), and fractional anisotropy (FA) of thigh muscles were calculated in 10 FSHD subjects and 15 HCs.
Background And Purpose: The use of MR imaging in emergency settings has been limited by availability, long scan times, and sensitivity to motion. This study assessed the diagnostic performance of an ultrafast brain MR imaging protocol for evaluation of acute intracranial pathology in the emergency department and inpatient settings.
Materials And Methods: Sixty-six adult patients who underwent brain MR imaging in the emergency department and inpatient settings were included in the study.
Background Deep learning (DL)-accelerated MRI can substantially reduce examination times. However, studies prospectively evaluating the diagnostic performance of DL-accelerated MRI reconstructions in acute suspected stroke are lacking. Purpose To investigate the interchangeability of DL-accelerated MRI with conventional MRI in patients with suspected acute ischemic stroke at 1.
View Article and Find Full Text PDFBackground: This study aimed to elucidate the impact of effective diffusion time setting on apparent diffusion coefficient (ADC)-based differentiation between primary central nervous system lymphomas (PCNSLs) and glioblastomas (GBMs) and to investigate the usage of time-dependent diffusion magnetic resonance imaging (MRI) parameters.
Methods: A retrospective study was conducted involving 21 patients with PCNSLs and 66 patients with GBMs using diffusion weighted imaging (DWI) sequences with oscillating gradient spin-echo (Δ = 7.1 ms) and conventional pulsed gradient (Δ = 44.
Background: Oscillating gradient diffusion-weighted imaging (DWI) enables elucidation of microstructural characteristics in cancers; however, there are limited data to evaluate its utility in patients with endometrial cancer.
Purpose: To investigate the utility of oscillating gradient DWI for risk stratification in patients with uterine endometrial cancer compared with conventional pulsed gradient DWI.
Study Type: Retrospective.
Purpose: The aim of this study was to evaluate the image quality and feasibility of a field map-based technique to correct for susceptibility-induced geometric distortions which are typical for diffusion EPI brain imaging.
Methods: We prospectively included 52 patients during clinical routine in this single-center study. All scans were performed on a 3T MRI.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib
June 2023
In the course of diffusion, water molecules experience varying values for the relaxation-time property of the underlying tissue, a factor that has not been accounted for in diffusion MRI (dMRI) modeling. Accordingly, we derive a relationship between the diffusion profile measured by dMRI and the spatial gradient of the image, and subsequently estimate the latter from the former. We test our hypothesized relationship via dMRI of the human brain (a public image and an acquired stimulated-echo image), showing statistically significant results that may be due to our model and/or the confounding factor of "fiber continuity".
View Article and Find Full Text PDFBackground: Patients with type-2 diabetes (T2DM) are at increased risk of developing diabetic foot ulcers (DFU) and experiencing impaired wound healing related to underlying microvascular disease.
Purpose: To evaluate the sensitivity of intra-voxel incoherent motion (IVIM) and blood oxygen level dependent (BOLD) MRI to microvascular changes in patients with DFUs.
Study Type: Case-control.
Background: This study was designed to investigate the use of time-dependent diffusion magnetic resonance imaging (MRI) parameters in distinguishing between glioblastomas and brain metastases.
Methods: A retrospective study was conducted involving 65 patients with glioblastomas and 27 patients with metastases using a diffusion-weighted imaging sequence with oscillating gradient spin-echo (OGSE, 50 Hz) and a conventional pulsed gradient spin-echo (PGSE, 0 Hz) sequence. In addition to apparent diffusion coefficient (ADC) maps from two sequences (ADC and ADC), we generated maps of the ADC change (cADC): ADC - ADC and the relative ADC change (rcADC): (ADC - ADC)/ ADC × 100 (%).
Background: Apparent diffusion coefficient is not specifically sensitive to tumor microstructure and therapy-induced cellular changes.
Purpose: To investigate time-dependent diffusion imaging with the short-time-limit random walk with barriers model (STL-RWBM) for quantifying microstructure parameters and early cancer cellular response to therapy.
Study Type: Prospective.
Rationale And Objectives: To evaluate clinical feasibility and image quality of a comprehensive ultrafast brain MRI protocol with multi-shot echo planar imaging and deep learning-enhanced reconstruction at 1.5T.
Materials And Methods: Thirty consecutive patients who underwent clinically indicated MRI at a 1.
Objectives: Acute ischemic stroke (AIS) is an emergency requiring both fast and informative MR sequences. We aimed to assess the performance of an artificial intelligence-enhanced ultrafast (UF) protocol, compared to the reference protocol, in the AIS management.
Methods: We included patients admitted in the emergency department for suspected AIS.
Oscillating gradient spin-echo (OGSE) sequences provide access to short diffusion times and may provide insight into micro-scale internal structures of pathologic lesions based on an analysis of changes in diffusivity with differing diffusion times. We hypothesized that changes in diffusivity acquired with a shorter diffusion time may permit elucidation of properties related to the internal structure of extra-axial brain tumors. This study aimed to investigate the utility of changes in diffusivity between short and long diffusion times for characterizing extra-axial brain tumors.
View Article and Find Full Text PDFDiffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-Gaussian diffusion, which in turn has been shown to increase sensitivity towards, e.g.
View Article and Find Full Text PDFIn MRI-based radiation therapy planning, mitigating patient-specific distortion with standard high bandwidth scans can result in unnecessary sacrifices of signal to noise ratio. This study investigates a technique for distortion detection and mitigation on a patient specific basis.Fast B0 mapping was performed using a previously developed technique for high-resolution, large dynamic range field mapping without the need for phase unwrapping algorithms.
View Article and Find Full Text PDFCognitive training-induced neuroplastic brain changes have been reported. This prospective study evaluated whether microscopic fractional anisotropy (μFA) derived from double diffusion encoding (DDE) MRI could detect brain changes following a 4 week cognitive training. Twenty-nine healthy volunteers were recruited and randomly assigned into the training ( = 21) and control ( = 8) groups.
View Article and Find Full Text PDFPurpose: To evaluate the impact of magnetization transfer (MT) on brain tissue contrast in turbo-spin-echo (TSE) and EPI fluid-attenuated inversion recovery (FLAIR) images, and to optimize an MT-prepared EPI FLAIR pulse sequence to match the tissue contrast of a clinical reference TSE FLAIR protocol.
Methods: Five healthy volunteers underwent 3T brain MRI, including single slice TSE FLAIR, multi-slice TSE FLAIR, EPI FLAIR without MT-preparation, and MT-prepared EPI FLAIR with variations of the MT-preparation parameters, including number of preparation pulses, pulse amplitude, and resonance offset. Automated co-registration and gray matter (GM) versus white matter (WM) segmentation was performed using a T1-MPRAGE acquisition, and the GM versus WM signal intensity ratio (contrast ratio) was calculated for each FLAIR acquisition.
Purpose: We introduce and validate an artificial intelligence (AI)-accelerated multi-shot echo-planar imaging (msEPI)-based method that provides T1w, T2w, , T2-FLAIR, and DWI images with high SNR, high tissue contrast, low specific absorption rates (SAR), and minimal distortion in 2 minutes.
Methods: The rapid imaging technique combines a novel machine learning (ML) scheme to limit g-factor noise amplification and improve SNR, a magnetization transfer preparation module to provide clinically desirable contrast, and high per-shot EPI undersampling factors to reduce distortion. The ML training and image reconstruction incorporates a tunable parameter for controlling the level of denoising/smoothness.