The nitrides and carbides of transition metals are highly favored due to their excellent physical and chemical properties, among which MXene is a hot research topic for microwave absorption. Herein, the controlled preparation of 3D Mo TiC T -based microspheres toward microwave absorption is reported for the first time. With the merits of the performances of both reduced graphite oxide (RGO) and MXene sufficiently considered, the influence of carbonization temperature on the internal crystal structure and the effective microwave-material interaction surface of the prepared Mo TiC T /RGO is systematically investigated.
View Article and Find Full Text PDFStimuli-triggered generation of complicated 3D shapes from 2D strips or plates without using sophisticated molds is desirable and achieving such 2D-to-3D shape transformation in combination with shape reconfiguration, welding, and reprogramming on a single material is very challenging. Here, a convenient and facile strategy using the solution of a disulfide-containing diamine for patterned secondary crosslinking of an optical shape-memory polymer network is developed to integrate the above performances. The dangling thiolectones attached to the backbones react with the diamine in the solution-deposited region so that the secondary crosslinking may not only weld individual strips into assembled 3D shapes but also suppress the relaxation of the deformed polymer chains to different extents for shape reconfiguration or heating-induced complex 3D deformations.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2022
A porous liquid-crystalline network (LCN), prepared by using a template method, was found to exhibit peculiar actuation functions. The creation of porosity makes the initially hydrophobic LCN behave like a hydrogel, capable of absorbing a large volume of water (up to ten times the sample size of LCN). When the amount of absorbed water is relatively small (about 100 % swelling ratio), the porous LCN displays anisotropic swelling in water and, in the same time, the retained uniaxial alignment of mesogens ensures a thermally induced shape change associated with a LC-isotropic phase transition.
View Article and Find Full Text PDFMacromol Rapid Commun
December 2021
Liquid crystalline hydrogel (LCH) is synthesized through simultaneous polymerization of hydrophobic and hydrophilic monomers in an oil-in-water emulsion, resulting in phase-separated liquid crystalline network (LCN) embedded in a hydrogel matrix. This material features some properties and functions of both LCN and hydrogel, displaying stable LC phase over repeated hydration and dehydration cycles of the hydrogel matrix. Using mechanically stretched and photocrosslinked LCH, the thermally induced LC-isotropic phase transition in LCN domains can be translated into reversible macroscopic deformation of the LCH.
View Article and Find Full Text PDFLiquid crystalline elastomers (LCEs) have been actively investigated as stimuli-controlled actuators and soft robots. The basis of these applications is the ability of LCEs to undergo a reversible shape change upon a liquid crystalline (LC)-isotropic phase transition. Herein, we report the synthesis of a novel LCE based on a side-chain liquid crystalline polymer (SCLCP).
View Article and Find Full Text PDFA strip of a liquid crystal elastomer doped with a near-infrared dye with one side crosslinked monodomain and the other crosslinked polydomain along the thickness behaves like a multifunctional photoactuator without the need for a support. A flat strip with two ends fixed on substrate surface forms a moving bump under laser scanning, which can be used as light-fueled conveyor to transport an object. Cutting off and laser scanning the bump with two free ends makes a soft and flexible millimeter-scale crawler that can not only move straight and climb an inclined surface, but also undergo light-guided turning to right or left as a result of combined out-of-plane and in-plane actuation.
View Article and Find Full Text PDFA new approach to encapsulating charged cargo molecules into a nanovector and subsequently using near-infrared (NIR) light to trigger the release is demonstrated. NIR light-responsive nanovector was prepared through electrostatic interaction-driven complexation between negatively charged silica-coated upconversion nanoparticles (UCNP@silica, 87 nm hydrodynamic diameter, polydispersity index ∼0.05) and a positively charged UV-labile polyelectrolyte bearing pendants of poly(ethylene glycol) and o-nitrobenzyl side groups; whereas charged fluorescein (FLU) was loaded through a co-complexation process.
View Article and Find Full Text PDFIt is very challenging to make materials capable of autonomous oscillation known in many living systems (such as the heartbeat). Herein, we describe an approach to creating a thermo-mechano-thermal feedback loop for thermal phase transition-based polymer actuators, which leads to hour-long, autonomous motion on a substrate surface of constant temperature. We investigated the variables that determine the amplitude and period of the motion, and demonstrated exemplary physical work powered by direct thermomechanical energy conversion.
View Article and Find Full Text PDFPhotoresponsive actuators based on semicrystalline poly(ethylene-co-vinyl acetate) (EVA) loaded with small amounts of gold nanoparticles (AuNPs) are described. Upon absorption of light (532 nm), the heat released by the AuNPs raises the temperature in the irradiated region to T to melt crystallites with lower melting temperatures (T
Strong aggregation-caused quenching of perylene diimides (PDI) is changed successfully by simple chemical modification with two quinoline moieties through C=C at the bay positions to obtain aggregation-induced enhanced emission (AIEE) of a perylene derivative (Cya-PDI) with a large π-conjugation system. Cya-PDI is weakly luminescent in the well-dispersed CH(3)CN or THF solutions and exhibits an evident time-dependent AIEE and absorption spectra broadening in the aggregated state. In addition, morphological inspection demonstrates that the morphology of the aggregated form of Cya-PDI molecules changed from plate-shaped to rod-like aggregates under the co-effects of time and water.
View Article and Find Full Text PDF