Background: Carbapenem-resistant Gram-negative bacteria and methicillin-resistant Staphylococcus aureus (MRSA) are among WHO's priority pathogens with antimicrobial resistance (AMR). Studies suggest potential impacts of the COVID-19-pandemic on AMR. We described changes in AMR incidence and epidemiology in Germany during the COVID-19-pandemic.
View Article and Find Full Text PDFMachine learning has emerged as a promising approach for predicting molecular properties of proteins, as it addresses limitations of experimental and traditional computational methods. Here, we introduce GSnet, a graph neural network (GNN) trained to predict physicochemical and geometric properties including solvation free energies, diffusion constants, and hydrodynamic radii, based on three-dimensional protein structures. By leveraging transfer learning, pre-trained GSnet embeddings were adapted to predict solvent-accessible surface area (SASA) and residue-specific p values, achieving high accuracy and generalizability.
View Article and Find Full Text PDFThe viscosity and diffusion properties of crowded protein systems were investigated with molecular dynamics simulations of SH3 mixtures with different crowders, and results were compared with experimental data. The simulations accurately reproduced experimental trends across a wide range of protein concentrations, including highly crowded environments up to 300 g/L. Notably, viscosity increased with crowding but varied little between different crowder types, while diffusion rates were significantly reduced depending on protein-protein interaction strength.
View Article and Find Full Text PDFBiomolecular interactions are essential in many biological processes, including complex formation and phase separation processes. Coarse-grained computational models are especially valuable for studying such processes via simulation. Here, we present COCOMO2, an updated residue-based coarse-grained model that extends its applicability from intrinsically disordered peptides to folded proteins.
View Article and Find Full Text PDFBacterial microcompartments (BMCs) are nanometer-scale organelles with a protein-based shell that serve to co-localize and encapsulate metabolic enzymes. They may provide a range of benefits to improve pathway catalysis, including substrate channeling and selective permeability. Several groups are working toward using BMC shells as a platform for enhancing engineered metabolic pathways.
View Article and Find Full Text PDFThe viscosity and diffusion properties of crowded protein systems were investigated with molecular dynamics simulations of SH3 mixtures with different crowders, and results were compared with experimental data. The simulations accurately reproduced experimental trends across a wide range of protein concentrations, including highly crowded environments up to 300 g/L. Notably, viscosity increased with crowding but varied little between different crowder types, while diffusion rates were significantly reduced depending on protein-protein interaction strength.
View Article and Find Full Text PDFSince its inception nearly a half century ago, CHARMM has been playing a central role in computational biochemistry and biophysics. Commensurate with the developments in experimental research and advances in computer hardware, the range of methods and applicability of CHARMM have also grown. This review summarizes major developments that occurred after 2009 when the last review of CHARMM was published.
View Article and Find Full Text PDFCatalysis and translocation of multisubunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near-atomic resolution and precise arrangement of key active site components have been elusive.
View Article and Find Full Text PDFBacterial microcompartments (BMCs) are self-assembling, selectively permeable protein shells that encapsulate enzymes to enhance catalytic efficiency of segments of metabolic pathways through means of confinement. The modular nature of BMC shells' structure and assembly enables programming of shell permeability and underscores their promise in biotechnology engineering efforts for applications in industry, medicine, and clean energy. Realizing this potential requires methods for encapsulation of abiotic molecules, which have been developed here for the first time.
View Article and Find Full Text PDFThe binding affinity of antibodies to specific antigens stems from a remarkably broad repertoire of hypervariable loops known as complementarity-determining regions (CDRs). While recognizing the pivotal role of the heavy-chain 3 CDRs (CDR-H3s) in maximizing antibody-antigen affinity and specificity, the key structural determinants responsible for their adaptability to diverse loop sequences, lengths, and noncanonical structures are hitherto unknown. To address this question, we achieved a de novo synthesis of bulged CDR-H3 mimics excised from their full antibody context.
View Article and Find Full Text PDFBiomolecular condensates play a key role in cytoplasmic compartmentalization and cell functioning. Despite extensive research on the physico-chemical, thermodynamic, or crowding aspects of the formation and stabilization of the condensates, one less studied feature is the role of external perturbative fluid flow. In fact, in living cells, shear stress may arise from streaming or active transport processes.
View Article and Find Full Text PDFIntrinsically disordered proteins have dynamic structures through which they play key biological roles. The elucidation of their conformational ensembles is a challenging problem requiring an integrated use of computational and experimental methods. Molecular simulations are a valuable computational strategy for constructing structural ensembles of disordered proteins but are highly resource-intensive.
View Article and Find Full Text PDFIntrinsically disordered proteins have dynamic structures through which they play key biological roles. The elucidation of their conformational ensembles is a challenging problem requiring an integrated use of computational and experimental methods. Molecular simulations are a valuable computational strategy for constructing structural ensembles of disordered proteins but are highly resource-intensive.
View Article and Find Full Text PDFAtomistic resolution is the standard for high-resolution biomolecular structures, but experimental structural data are often at lower resolution. Coarse-grained models are also used extensively in computational studies to reach biologically relevant spatial and temporal scales. This study explores the use of advanced machine learning networks for reconstructing atomistic models from reduced representations.
View Article and Find Full Text PDFCatalysis and translocation of multi-subunit DNA-directed RNA polymerases underlie all cellular mRNA synthesis. RNA polymerase II (Pol II) synthesizes eukaryotic pre-mRNAs from a DNA template strand buried in its active site. Structural details of catalysis at near atomic resolution and precise arrangement of key active site components have been elusive.
View Article and Find Full Text PDFUnderstanding the thermodynamics that drive liquid-liquid phase separation (LLPS) is quite important given the number of diverse biomolecular systems undergoing this phenomenon. Many studies have focused on condensates of long polymers, but very few systems of short-polymer condensates have been observed and studied. Here, we study a short-polymer system of various lengths of poly-adenine RNA and peptides formed by the RGRGG sequence repeats to understand the underlying thermodynamics of LLPS.
View Article and Find Full Text PDFCatalysis and fidelity of multisubunit RNA polymerases rely on a highly conserved active site domain called the trigger loop (TL), which achieves roles in transcription through conformational changes and interaction with NTP substrates. The mutations of TL residues cause distinct effects on catalysis including hypo- and hyperactivity and altered fidelity. We applied molecular dynamics simulation (MD) and machine learning (ML) techniques to characterize TL mutations in the Saccharomyces cerevisiae RNA Polymerase II (Pol II) system.
View Article and Find Full Text PDFDynamics and conformational sampling are essential for linking protein structure to biological function. While challenging to probe experimentally, computer simulations are widely used to describe protein dynamics, but at significant computational costs that continue to limit the systems that can be studied. Here, we demonstrate that machine learning can be trained with simulation data to directly generate physically realistic conformational ensembles of proteins without the need for any sampling and at negligible computational cost.
View Article and Find Full Text PDFBiomolecular condensation, especially liquid-liquid phase separation, is an important physical process with relevance for a number of different aspects of biological functions. Key questions of what drives such condensation, especially in terms of molecular composition, can be addressed via computer simulations, but the development of computationally efficient yet physically realistic models has been challenging. Here, the coarse-grained model COCOMO is introduced that balances the polymer behavior of peptides and RNA chains with their propensity to phase separate as a function of composition and concentration.
View Article and Find Full Text PDFPolyelectrolytes continue to find wide interest and application in science and engineering, including areas such as water purification, drug delivery, and multilayer thin films. We have been interested in the dynamics of small molecules in a variety of polyelectrolyte (PE) environments; in this paper, we report simulations and analysis of the small dye molecule rhodamine B (RB) in several very simple polyelectrolyte solutions. Translational diffusion of the RB zwitterion has been measured in fully atomistic, 2 μs long molecular dynamics simulations in four different polyelectrolyte solutions.
View Article and Find Full Text PDFIn Germany, there is an increasing amount of vancomycin-resistant Enterococcus faecium (VREfm) isolates in bloodstream infections (BSIs); however, estimates on recent incidences and disease burden are missing. We aim to estimate the incidence and calculate the annual disease burden in disease-adjusted life years (DALYs) for BSIs due to VREfm in Germany between 2015 and 2020 to support informed decision-making in the field of antimicrobial resistance (AMR). We used the Antibiotic Resistance Surveillance (ARS) system data to obtain incidence estimates.
View Article and Find Full Text PDFTransient protein-protein interactions occur frequently under the crowded conditions encountered in biological environments. Tryptophan-cysteine quenching is introduced as an experimental approach with minimal labeling for characterizing such interactions between proteins due to its sensitivity to nano- to microsecond dynamics on subnanometer length scales. The experiments are paired with computational modeling at different resolutions including fully atomistic molecular dynamics simulations for interpretation of the experimental observables and to gain molecular-level insights.
View Article and Find Full Text PDFProteins
November 2022
The family of G-protein coupled receptors (GPCRs) is one of the largest protein families in the human genome. GPCRs transduct chemical signals from extracellular to intracellular regions via a conformational switch between active and inactive states upon ligand binding. While experimental structures of GPCRs remain limited, high-accuracy computational predictions are now possible with AlphaFold2.
View Article and Find Full Text PDFIntramembrane proteases (IPs) function in numerous signaling pathways that impact health, but elucidating the regulation of membrane-embedded proteases is challenging. We examined inhibition of intramembrane metalloprotease SpoIVFB by proteins BofA and SpoIVFA. We found that SpoIVFB inhibition requires BofA residues in and near a predicted transmembrane segment (TMS).
View Article and Find Full Text PDF